forked from PeterWang512/CNNDetection
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvalidate.py
executable file
·72 lines (61 loc) · 2.56 KB
/
validate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
import torch
import numpy as np
from networks.resnet import resnet50
from sklearn.metrics import average_precision_score, precision_recall_curve, accuracy_score,roc_auc_score
from options.test_options import TestOptions
from data import create_dataloader
from tqdm.auto import tqdm
def validate(model, opt):
data_loader = create_dataloader(opt)
with torch.no_grad():
y_true, y_pred = [], []
for img, label in data_loader:
in_tens = img.cuda()
y_pred.extend(model(in_tens).sigmoid().flatten().tolist())
y_true.extend(label.flatten().tolist())
y_true, y_pred = np.array(y_true), np.array(y_pred)
r_acc = accuracy_score(y_true[y_true==0], y_pred[y_true==0] > 0.5)
f_acc = accuracy_score(y_true[y_true==1], y_pred[y_true==1] > 0.5)
acc = accuracy_score(y_true, y_pred > 0.5)
ap = average_precision_score(y_true, y_pred)
return acc, ap, r_acc, f_acc, y_true, y_pred
def Custom_validate(model,dl,accelerator):
# count = 0
with torch.inference_mode():
y_true, y_pred = [], []
for img, label in tqdm(dl,position=0,desc=f"validating",disable=not accelerator.is_main_process):
in_tens = img
y_p = model(in_tens).softmax(1)
all_y_p,all_label = accelerator.gather_for_metrics((y_p,label))
y_pred.extend(all_y_p.tolist())
y_true.extend(all_label.flatten().tolist())
# count += 1
# if count == 30:
# break
y_true, y_pred = np.array(y_true), np.array(y_pred,dtype=np.float32)
r_acc = accuracy_score(y_true[y_true==0], np.argmax(y_pred[y_true==0],axis=1))
f_acc = accuracy_score(y_true[y_true==1], np.argmax(y_pred[y_true==1],axis=1))
acc = accuracy_score(y_true, np.argmax(y_pred,axis=1))
try:
ap = average_precision_score(y_true, y_pred[:,1])
except Exception as e:
print(e)
ap = -1
try:
auc = roc_auc_score(y_true,y_pred[:,1])
except Exception as e:
print(e)
auc = -1
return acc, ap, r_acc, f_acc, auc, y_true, y_pred
if __name__ == '__main__':
opt = TestOptions().parse(print_options=False)
model = resnet50(num_classes=1)
state_dict = torch.load(opt.model_path, map_location='cpu')
model.load_state_dict(state_dict['model'])
model.cuda()
model.eval()
acc, avg_precision, r_acc, f_acc, y_true, y_pred = validate(model, opt)
print("accuracy:", acc)
print("average precision:", avg_precision)
print("accuracy of real images:", r_acc)
print("accuracy of fake images:", f_acc)