-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathstep-4_2.py
187 lines (151 loc) · 5.42 KB
/
step-4_2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
import os
import glob
import argparse
from tqdm.auto import tqdm
import pandas as pd
from dataclasses import dataclass
from torch.utils.data import DataLoader
from typing import Any, Dict, List, Union
import numpy as np
import librosa
import pickle
import torch
from datasets import Dataset
import torch.nn.functional as F
from transformers import (
EncoderDecoderCache,
AutoModelForSpeechSeq2Seq,
AutoProcessor,
)
device = "cuda:0" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
model = (
AutoModelForSpeechSeq2Seq.from_pretrained(
"openai/whisper-large-v3",
torch_dtype=torch_dtype,
low_cpu_mem_usage=True,
use_safetensors=True,
attn_implementation="sdpa",
)
.eval()
.to(device)
)
processor = AutoProcessor.from_pretrained("openai/whisper-large-v3")
prompt_text, prompt_wav = pickle.load(open("prompt.pkl", "rb"))
device = "cuda:0" if torch.cuda.is_available() else "cpu"
eos_token_id = processor.tokenizer.eos_token_id
def encoder_forward(input_features):
with torch.no_grad():
output_attentions = model.model.config.output_attentions
output_hidden_states = model.model.config.output_hidden_states
encoder_outputs = model.model.encoder(
input_features,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
)
return encoder_outputs, output_attentions, output_hidden_states
def decoder_forward(
decoder_input_ids, encoder_outputs, past_key_values=None, use_cache=False
):
with torch.no_grad():
outputs = model.model.decoder(
input_ids=decoder_input_ids,
past_key_values=past_key_values,
encoder_hidden_states=encoder_outputs[0],
use_cache=use_cache,
return_dict=True,
)
return outputs
def prompt_generation(
batch,
**kwargs,
):
batch_size = batch["input_features"].shape[0]
forced_decoder_ids = processor.get_decoder_prompt_ids(
language="yue", task="transcribe"
)
decoder_input_ids = [model.config.decoder_start_token_id] + [
f[1] for f in forced_decoder_ids
]
encoder_outputs, output_attentions, output_hidden_states = encoder_forward(
batch["input_features"]
)
past_key_values = None
decoder_input_ids = torch.LongTensor(
[decoder_input_ids + prompt_text[:-1]] * batch_size
).to(device)
outputs = decoder_forward(
decoder_input_ids[:, :-1],
encoder_outputs,
past_key_values=EncoderDecoderCache.from_legacy_cache(past_key_values),
use_cache=True,
)
past_key_values = outputs.past_key_values
outputs = model.generate(
decoder_input_ids=decoder_input_ids,
encoder_outputs=encoder_outputs,
past_key_values=past_key_values,
use_cache=True,
**kwargs,
)
return outputs
def transcribe(batch):
outputs = prompt_generation(batch["input_features"])
transcriptions = processor.batch_decode(outputs, skip_special_tokens=True)
batch["transcription"] = transcriptions
return batch
half_sec_silence = np.zeros(8_000)
@dataclass
class DataCollatorSpeechSeq2SeqWithPadding:
processor: Any
def __call__(
self, features: List[Dict[str, Union[List[int], torch.Tensor]]]
) -> Dict[str, torch.Tensor]:
input_features = [
{
"input_features": processor.feature_extractor(
np.concatenate([prompt_wav, half_sec_silence, feature["audio"]]),
sampling_rate=16_000,
).input_features[0]
}
for feature in features
]
batch = {
"input_features": self.processor.feature_extractor.pad(
input_features, return_tensors="pt"
)
.to(device)
.to(torch_dtype),
"audio": [feature["audio"] for feature in features],
}
return batch
def get_input_features(batch):
batch["audio"] = [librosa.load(audio, sr=16_000)[0] for audio in batch["audio"]]
batch["audio"] = [
audio for audio in batch["audio"] if audio.shape[0] // 16_000 <= 30
] # below 30 seconds
return batch
def main(root_folder: str, batch_size=64):
data_collator = DataCollatorSpeechSeq2SeqWithPadding(processor=processor)
mp3_files = glob.glob(os.path.join(root_folder, "*.mp3")) + glob.glob(
os.path.join(root_folder, "**/*.mp3"), recursive=True
)
os.makedirs("transcriptions", exist_ok=True)
print("Total audio files:", len(mp3_files))
print("Transcribing...")
ds = Dataset.from_dict({"audio": mp3_files})
ds = ds.map(get_input_features, batched=True)
dataloader = DataLoader(ds, batch_size=batch_size, collate_fn=data_collator)
results = {"audio": [], "transcription": []}
for batch in tqdm(dataloader, total=len(ds) // batch_size):
outputs = transcribe(batch)
results["audio"].extend(batch["audio"])
results["transcription"].extend(outputs["transcription"])
df = pd.DataFrame(results)
df.to_csv("transcriptions/whisper_v3.csv", index=False)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--audio_root_path", required=True, type=str)
parser.add_argument("--batch_size", default=8, type=int)
args = parser.parse_args()
main(args.audio_root_path, args.batch_size)