-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbinary_test.py
256 lines (199 loc) · 11 KB
/
binary_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
from itertools import combinations
import pandas as pd
import os
from scipy.stats import binomtest
from tqdm import tqdm
datasets = ["lyrics", "20_newsgroups", "seven_categories"]
def binary_tests_stability_2(required_dr, required_tm, base_path, count_improvement_function):
n_alpha = 0
n_beta = 0
n_gamma = 0
n_samples = 0
for dataset in datasets:
real_path = base_path.replace("20_newsgroups", dataset)
df = pd.read_csv(real_path)
df = calculate_alpha_beta_gamma(df)
n_alpha, n_beta, n_gamma, n_samples = count_improvement_function(df, n_alpha, n_beta, n_gamma, n_samples,
required_dr, required_tm)
print(f"Results for experiment {required_dr} and {required_tm}:")
result = binomtest(n_alpha, n=n_samples, p=0.5, alternative='greater')
print(f"p-value for alpha: {result.pvalue}")
result = binomtest(n_beta, n=n_samples, p=0.5, alternative='greater')
print(f"p-value for beta: {result.pvalue}")
result = binomtest(n_gamma, n=n_samples, p=0.5, alternative='greater')
print(f"p-value for gamma: {result.pvalue}")
def count_improvements_tfidf(df, n_alpha, n_beta, n_gamma, n_samples, required_dr, required_tm):
columns = df.columns.tolist()
values = df.values.tolist()
alpha_index = columns.index('alpha')
beta_index = columns.index('beta')
gamma_index = columns.index('gamma')
file_names_1 = df["file_name_1"].tolist()
file_names_2 = df["file_name_2"].tolist()
visited_indices = []
combined_file_names = [(file_names_1[i], file_names_2[i]) for i in
range(len(file_names_1))]
for i, file_pair in enumerate(tqdm(combined_file_names)):
if i in visited_indices:
continue
if "tfidf" in file_pair[0] or required_dr not in file_pair[0]:
continue
elif "bow" in file_pair[0] and required_tm == "bow":
searched_pair = (file_pair[0].replace("bow", "tfidf"), file_pair[1].replace("bow", "tfidf"))
elif "lsi_linear_combined" in file_pair[0] and required_tm == "lsi":
searched_pair = (file_pair[0].replace("lsi_linear_combined", "lsi_linear_combined_tfidf"),
file_pair[1].replace("lsi_linear_combined", "lsi_linear_combined_tfidf"))
elif "lsi" in file_pair[0] and required_tm == "lsi":
searched_pair = (file_pair[0].replace("lsi", "lsi_tfidf"), file_pair[1].replace("lsi", "lsi_tfidf"))
elif "nmf_linear_combined" in file_pair[0] and required_tm == "nmf":
searched_pair = (file_pair[0].replace("nmf_linear_combined", "nmf_linear_combined_tfidf"),
file_pair[1].replace("nmf_linear_combined", "nmf_linear_combined_tfidf"))
elif "nmf" in file_pair[0] and required_tm == "nmf":
searched_pair = (file_pair[0].replace("nmf", "nmf_tfidf"), file_pair[1].replace("nmf", "nmf_tfidf"))
else:
continue
try:
index = combined_file_names.index(searched_pair)
if combined_file_names.count(searched_pair) > 1:
print(f"Attention!!! Multiple entries: {combined_file_names.count(searched_pair)}")
test = [(i, el) for i, el in enumerate(combined_file_names) if el == searched_pair]
continue
except ValueError:
continue
if values[index][alpha_index] > values[i][alpha_index]:
n_alpha += 1
if values[index][beta_index] > values[i][beta_index]:
n_beta += 1
if values[index][gamma_index] > values[i][gamma_index]:
n_gamma += 1
n_samples += 1
visited_indices.append(index)
return n_alpha, n_beta, n_gamma, n_samples
def count_improvements_linear_combined(df, n_alpha, n_beta, n_gamma, n_samples, required_dr, required_tm):
columns = df.columns.tolist()
values = df.values.tolist()
alpha_index = columns.index('alpha')
beta_index = columns.index('beta')
gamma_index = columns.index('gamma')
file_names_1 = df["file_name_1"].tolist()
file_names_2 = df["file_name_2"].tolist()
visited_indices = []
combined_file_names = [(file_names_1[i], file_names_2[i]) for i in
range(len(file_names_1))]
for i, file_pair in enumerate(tqdm(combined_file_names)):
if i in visited_indices:
continue
if "linear_combined" in file_pair[0] or required_dr not in file_pair[0]:
continue
elif "lda" in file_pair[0] and required_tm == "lda":
searched_pair = (
file_pair[0].replace("lda", "lda_linear_combined"), file_pair[1].replace("lda", "lda_linear_combined"))
elif "lsi" in file_pair[0] and "tfidf" in file_pair[0] and required_tm == "lsi":
searched_pair = (file_pair[0].replace("lsi_tfidf", "lsi_linear_combined_tfidf"),
file_pair[1].replace("lsi_tfidf", "lsi_linear_combined_tfidf"))
elif "lsi" in file_pair[0] and required_tm == "lsi":
searched_pair = (file_pair[0].replace("lsi_n", "lsi_linear_combined_n"),
file_pair[1].replace("lsi", "lsi_linear_combined_n"))
elif "nmf" in file_pair[0] and "tfidf" in file_pair[0] and required_tm == "nmf":
searched_pair = (file_pair[0].replace("nmf_tfidf", "nmf_linear_combined_tfidf"),
file_pair[1].replace("nmf_tfidf", "nmf_linear_combined_tfidf"))
elif "nmf" in file_pair[0] and required_tm == "nmf":
searched_pair = (file_pair[0].replace("nmf_n", "nmf_tfidf_n"), file_pair[1].replace("nmf_n", "nmf_tfidf_n"))
else:
continue
try:
index = combined_file_names.index(searched_pair)
if combined_file_names.count(searched_pair) > 1:
print(f"Attention!!! Multiple entries: {combined_file_names.count(searched_pair)}")
continue
except ValueError:
continue
if values[index][alpha_index] > values[i][alpha_index]:
n_alpha += 1
if values[index][beta_index] > values[i][beta_index]:
n_beta += 1
if values[index][gamma_index] > values[i][gamma_index]:
n_gamma += 1
n_samples += 1
visited_indices.append(index)
return n_alpha, n_beta, n_gamma, n_samples
def calculate_corrected_alpha_beta_gamma(df, data_set):
df = calculate_alpha_beta_gamma(df)
df_high = pd.read_csv(
f"results_experiment_5_corpus_similarity/results_experiment_5_corpus_similarity_{data_set}.csv")
df_high = calculate_alpha_beta_gamma(df_high)
alpha_jitter010 = df_high['alpha'].tolist()[0]
alpha_jitter025 = df_high['alpha'].tolist()[1]
beta_jitter010 = df_high['beta'].tolist()[0]
beta_jitter025 = df_high['beta'].tolist()[1]
gamma_jitter010 = df_high['gamma'].tolist()[0]
gamma_jitter025 = df_high['gamma'].tolist()[1]
corrected_alphas = []
corrected_betas = []
corrected_gammas = []
for i in range(len(df)):
if df["jitter_1"][i] == 0.1 or df["jitter_2"][i] == 0.1:
corrected_alphas.append(1 - abs(df["alpha"][i] - alpha_jitter010))
corrected_betas.append(1 - abs(df["beta"][i] - beta_jitter010))
corrected_gammas.append(1 - abs(df["gamma"][i] - gamma_jitter010))
if df["jitter_1"][i] == 0.25 or df["jitter_2"][i] == 0.25:
corrected_alphas.append(1 - abs(df["alpha"][i] - alpha_jitter025))
corrected_betas.append(1 - abs(df["beta"][i] - beta_jitter025))
corrected_gammas.append(1 - abs(df["gamma"][i] - gamma_jitter025))
df["alpha"] = corrected_alphas
df["beta"] = corrected_betas
df["gamma"] = corrected_gammas
return df
def binary_tests_stability_1(required_tm, required_dr, base_path, count_improvement_function):
n_alpha = 0
n_beta = 0
n_gamma = 0
n_samples = 0
for dataset in datasets:
real_path = base_path.replace("20_newsgroups", dataset)
df = pd.read_csv(real_path)
df = calculate_corrected_alpha_beta_gamma(df, dataset)
n_alpha, n_beta, n_gamma, n_samples = count_improvement_function(df, n_alpha, n_beta, n_gamma, n_samples,
required_dr, required_tm)
print(f"Results for experiment {required_dr} and {required_tm}:")
result = binomtest(n_alpha, n=n_samples, p=0.5, alternative='greater')
print(f"p-value for alpha: {result.pvalue}")
result = binomtest(n_beta, n=n_samples, p=0.5, alternative='greater')
print(f"p-value for beta: {result.pvalue}")
result = binomtest(n_gamma, n=n_samples, p=0.5, alternative='greater')
print(f"p-value for gamma: {result.pvalue}")
def binary_tests_stability_3(required_tm, required_dr, base_path, count_improvement_function):
binary_tests_stability_2(required_tm=required_tm, required_dr=required_dr,
base_path=base_path, count_improvement_function=count_improvement_function)
def main():
base_path_1 = "results_experiment_jitter/results_experiment_4_20_newsgroups.csv"
base_path_2 = "results_experiment_hyperparameters/results_experiment_2_20_newsgroups.csv"
base_path_3 = "results_experiment_randomness/results_experiment_3_20_newsgroups.csv"
tms = ["bow", "lsi", "nmf"]
drs = ["mds", "som", "tsne", "umap"]
for tm in tms:
for dr in drs:
binary_tests_stability_1(required_tm=tm, required_dr=dr, base_path=base_path_1,
count_improvement_function=count_improvements_tfidf)
binary_tests_stability_2(required_tm=tm, required_dr=dr, base_path=base_path_2,
count_improvement_function=count_improvements_tfidf)
binary_tests_stability_3(required_tm=tm, required_dr=dr, base_path=base_path_3,
count_improvement_function=count_improvements_tfidf)
tms = ["lda", "lsi", "nmf"]
for tm in tms:
for dr in drs:
binary_tests_stability_1(required_tm=tm, required_dr=dr, base_path=base_path_1,
count_improvement_function=count_improvements_linear_combined)
binary_tests_stability_2(required_tm=tm, required_dr=dr, base_path=base_path_2,
count_improvement_function=count_improvements_linear_combined)
binary_tests_stability_3(required_tm=tm, required_dr=dr, base_path=base_path_3,
count_improvement_function=count_improvements_linear_combined)
def calculate_alpha_beta_gamma(df):
df["alpha"] = (0.25 * (df["trustworthiness"] + df["continuity"] + df["mrre_missing"] + df["mrre_false"]) + df[
'label_preservation'] + df["local_continuity"]) / 3.0
df["beta"] = 0.5 * (0.5 * (0.5 * (df["pearson_correlation"] + 1) + 0.5 * (df["spearman_correlation"] + 1)) + 0.5 * (
df["cluster_ordering"] + 1))
df["gamma"] = 1 - (df["distance_consistency"])
return df
if __name__ == "__main__":
main()