-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
142 lines (127 loc) · 4.66 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
import argparse
import time
import torch
from tqdm import trange
import wandb
from common.make_env import make_vec_envs
from common.cfg import load_cfg
from ppo.agent import Agent
from ppo.model import ActorCritic, ActorCriticHistory, ActorCriticInstant
from ppo.runner import EnvRunner
from ppo.eval import eval_model
from xent import Xent
def train(args):
cfg = load_cfg(args.cfg, "cfg")
if args.mode == "instant":
cfg["model"]["num_obs"] = 4
wandb.init(project="edhr", config={**cfg, **vars(args)})
emb = cfg["embedding"]
envs = make_vec_envs(
name=args.env + "NoFrameskip-v4",
num=cfg["train"]["num_env"],
nstack=cfg["model"]["num_obs"],
clip_rewards=cfg["train"]["clip_rewards"],
max_ep_steps=cfg["train"]["max_ep_steps"],
seed=args.seed,
)
models = {
"both": ActorCritic,
"history": ActorCriticHistory,
"instant": ActorCriticInstant,
}
model = models[args.mode](
**cfg["model"], obs_size=emb["size"], num_action=envs.action_space.n
)
model.train().cuda()
if args.mode != "instant":
emb_trainer = Xent(
emb_size=emb["size"],
spatial_shift=emb["spatial_shift"],
temporal_shift=emb["temporal_shift"],
batch_size=emb["batch_size"],
rollouts_in_batch=emb["rollouts_in_batch"],
optimizer=emb["optimizer"],
tau=emb["tau"],
)
encoder = emb_trainer.encoder
if emb["pretrain"]["epochs"] == 0:
encoder.load_state_dict(torch.load("models/encoder.pt"))
else:
encoder = None
agent = Agent(model=model, encoder=encoder, **cfg["agent"])
rollout_size = cfg["train"]["rollout_size"]
runner = EnvRunner(
rollout_size=rollout_size,
envs=envs,
model=model,
encoder=encoder,
emb_size=emb["size"],
input_size=cfg["model"]["num_obs"],
device="cuda",
)
pretrain_steps = int(emb["pretrain"]["steps"] / (envs.num_envs * rollout_size))
obs_shape = list(envs.observation_space.shape)
obs_shape[0] = 1
if args.mode != "instant":
buffer = torch.empty(
rollout_size + 1,
pretrain_steps,
envs.num_envs,
*obs_shape,
dtype=torch.uint8,
device="cuda",
)
buf_cursor = 0
else:
emb_log = {}
n_end = int(cfg["train"]["total_steps"] / (envs.num_envs * rollout_size))
for n_iter, rollout in zip(trange(n_end), runner):
if args.mode != "instant":
buffer[:, buf_cursor] = rollout["obs"][:, :, -1:]
buf_cursor = (buf_cursor + 1) % buffer.shape[1]
if n_iter < pretrain_steps:
continue
elif n_iter == pretrain_steps:
if args.mode != "instant":
encoder.train()
for epoch in trange(emb["pretrain"]["epochs"]):
log = emb_trainer.update(buffer)
if (epoch + 1) % (emb["pretrain"]["epochs"] // 100) == 0:
wandb.log(log)
encoder.eval()
buf_cursor = 0
buffer = buffer[:, : emb["rollouts_in_batch"]]
if emb["pretrain"]["epochs"] > 0:
torch.save(encoder.state_dict(), "models/encoder.pt")
runner.rnd = False
else:
progress = n_iter / n_end
agent.optim.update(progress)
if args.mode != "instant":
emb_trainer.optim.update(progress)
encoder.train()
for epoch in range(emb["epochs"]):
emb_log = emb_trainer.update(buffer)
encoder.eval()
agent_log = agent.update(rollout, progress)
if (n_iter + 1) % cfg["train"]["log_every"] == 0:
wandb.log(
{**agent_log, **emb_log, **runner.get_logs(), "progress": progress}
)
filename = f"models/{int(time.time())}.pt"
dump = [model.state_dict()]
if encoder is not None:
dump += [encoder.state_dict()]
torch.save(dump, filename)
wandb.log({"filename": filename})
reward = eval_model(model, envs, encoder)
wandb.log({"final/reward_mean": reward.mean(), "final/reward_std": reward.std()})
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="")
parser.add_argument("--cfg", type=str, default="default")
parser.add_argument("--env", type=str, default="MsPacman")
parser.add_argument(
"--mode", type=str, choices=["both", "instant", "history"], default="both"
)
parser.add_argument("--seed", type=int, default=0)
train(parser.parse_args())