-
Notifications
You must be signed in to change notification settings - Fork 631
/
Copy pathtest_inference_providers.py
599 lines (513 loc) · 23.4 KB
/
test_inference_providers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
import base64
from typing import Dict
import pytest
from huggingface_hub.inference._providers._common import (
BaseConversationalTask,
BaseTextGenerationTask,
recursive_merge,
)
from huggingface_hub.inference._providers.black_forest_labs import BlackForestLabsTextToImageTask
from huggingface_hub.inference._providers.fal_ai import (
FalAIAutomaticSpeechRecognitionTask,
FalAITextToImageTask,
FalAITextToSpeechTask,
FalAITextToVideoTask,
)
from huggingface_hub.inference._providers.fireworks_ai import FireworksAIConversationalTask
from huggingface_hub.inference._providers.hf_inference import (
HFInferenceBinaryInputTask,
HFInferenceConversational,
HFInferenceTask,
)
from huggingface_hub.inference._providers.hyperbolic import (
HyperbolicTextGenerationTask,
HyperbolicTextToImageTask,
)
from huggingface_hub.inference._providers.nebius import NebiusTextToImageTask
from huggingface_hub.inference._providers.novita import (
NovitaConversationalTask,
NovitaTextGenerationTask,
)
from huggingface_hub.inference._providers.replicate import ReplicateTask, ReplicateTextToSpeechTask
from huggingface_hub.inference._providers.sambanova import SambanovaConversationalTask
from huggingface_hub.inference._providers.together import (
TogetherTextToImageTask,
)
class TestBlackForestLabsProvider:
def test_prepare_headers_bfl_key(self):
helper = BlackForestLabsTextToImageTask()
headers = helper._prepare_headers({}, "bfl_key")
assert "authorization" not in headers
assert headers["X-Key"] == "bfl_key"
def test_prepare_headers_hf_key(self):
"""When using HF token, must use Bearer authorization."""
helper = BlackForestLabsTextToImageTask()
headers = helper._prepare_headers({}, "hf_test_token")
assert headers["authorization"] == "Bearer hf_test_token"
assert "X-Key" not in headers
def test_prepare_route(self):
"""Test route preparation."""
helper = BlackForestLabsTextToImageTask()
assert helper._prepare_route("username/repo_name") == "username/repo_name"
def test_prepare_url(self):
helper = BlackForestLabsTextToImageTask()
assert (
helper._prepare_url("hf_test_token", "username/repo_name")
== "https://router.huggingface.co/black-forest-labs/username/repo_name"
)
def test_prepare_payload_as_dict(self):
"""Test payload preparation with parameter renaming."""
helper = BlackForestLabsTextToImageTask()
payload = helper._prepare_payload_as_dict(
"a beautiful cat",
{
"num_inference_steps": 30,
"guidance_scale": 7.5,
"width": 512,
"height": 512,
"seed": 42,
},
"username/repo_name",
)
assert payload == {
"prompt": "a beautiful cat",
"steps": 30, # renamed from num_inference_steps
"guidance": 7.5, # renamed from guidance_scale
"width": 512,
"height": 512,
"seed": 42,
}
def test_get_response_success(self, mocker):
"""Test successful response handling with polling."""
helper = BlackForestLabsTextToImageTask()
mock_session = mocker.patch("huggingface_hub.inference._providers.black_forest_labs.get_session")
mock_session.return_value.get.side_effect = [
mocker.Mock(
json=lambda: {"status": "Ready", "result": {"sample": "https://example.com/image.jpg"}},
raise_for_status=lambda: None,
),
mocker.Mock(content=b"image_bytes", raise_for_status=lambda: None),
]
response = helper.get_response({"polling_url": "https://example.com/poll"})
assert response == b"image_bytes"
assert mock_session.return_value.get.call_count == 2
mock_session.return_value.get.assert_has_calls(
[
mocker.call("https://example.com/poll", headers={"Content-Type": "application/json"}),
mocker.call("https://example.com/image.jpg"),
]
)
class TestFalAIProvider:
def test_prepare_headers_fal_ai_key(self):
"""When using direct call, must use Key authorization."""
headers = FalAITextToImageTask()._prepare_headers({}, "fal_ai_key")
assert headers["authorization"] == "Key fal_ai_key"
def test_prepare_headers_hf_key(self):
"""When using routed call, must use Bearer authorization."""
headers = FalAITextToImageTask()._prepare_headers({}, "hf_token")
assert headers["authorization"] == "Bearer hf_token"
def test_prepare_route(self):
url = FalAITextToImageTask()._prepare_url("hf_token", "username/repo_name")
assert url == "https://router.huggingface.co/fal-ai/username/repo_name"
def test_automatic_speech_recognition_payload(self):
helper = FalAIAutomaticSpeechRecognitionTask()
payload = helper._prepare_payload_as_dict("https://example.com/audio.mp3", {}, "username/repo_name")
assert payload == {"audio_url": "https://example.com/audio.mp3"}
payload = helper._prepare_payload_as_dict(b"dummy_audio_data", {}, "username/repo_name")
assert payload == {"audio_url": f"data:audio/mpeg;base64,{base64.b64encode(b'dummy_audio_data').decode()}"}
def test_automatic_speech_recognition_response(self):
helper = FalAIAutomaticSpeechRecognitionTask()
response = helper.get_response({"text": "Hello world"})
assert response == "Hello world"
with pytest.raises(ValueError):
helper.get_response({"text": 123})
def test_text_to_image_payload(self):
helper = FalAITextToImageTask()
payload = helper._prepare_payload_as_dict(
"a beautiful cat", {"width": 512, "height": 512}, "username/repo_name"
)
assert payload == {
"prompt": "a beautiful cat",
"image_size": {"width": 512, "height": 512},
}
def test_text_to_image_response(self, mocker):
helper = FalAITextToImageTask()
mock = mocker.patch("huggingface_hub.inference._providers.fal_ai.get_session")
response = helper.get_response({"images": [{"url": "image_url"}]})
mock.return_value.get.assert_called_once_with("image_url")
assert response == mock.return_value.get.return_value.content
def test_text_to_speech_payload(self):
helper = FalAITextToSpeechTask()
payload = helper._prepare_payload_as_dict("Hello world", {}, "username/repo_name")
assert payload == {"lyrics": "Hello world"}
def test_text_to_speech_response(self, mocker):
helper = FalAITextToSpeechTask()
mock = mocker.patch("huggingface_hub.inference._providers.fal_ai.get_session")
response = helper.get_response({"audio": {"url": "audio_url"}})
mock.return_value.get.assert_called_once_with("audio_url")
assert response == mock.return_value.get.return_value.content
def test_text_to_video_payload(self):
helper = FalAITextToVideoTask()
payload = helper._prepare_payload_as_dict("a cat walking", {"num_frames": 16}, "username/repo_name")
assert payload == {"prompt": "a cat walking", "num_frames": 16}
def test_text_to_video_response(self, mocker):
helper = FalAITextToVideoTask()
mock = mocker.patch("huggingface_hub.inference._providers.fal_ai.get_session")
response = helper.get_response({"video": {"url": "video_url"}})
mock.return_value.get.assert_called_once_with("video_url")
assert response == mock.return_value.get.return_value.content
class TestFireworksAIConversationalTask:
def test_prepare_url(self):
helper = FireworksAIConversationalTask()
url = helper._prepare_url("fireworks_token", "username/repo_name")
assert url == "https://api.fireworks.ai/inference/v1/chat/completions"
def test_prepare_payload_as_dict(self):
helper = FireworksAIConversationalTask()
payload = helper._prepare_payload_as_dict(
[{"role": "user", "content": "Hello!"}], {}, "meta-llama/Llama-3.1-8B-Instruct"
)
assert payload == {
"messages": [{"role": "user", "content": "Hello!"}],
"model": "meta-llama/Llama-3.1-8B-Instruct",
}
class TestHFInferenceProvider:
def test_prepare_mapped_model(self, mocker):
helper = HFInferenceTask("text-classification")
assert helper._prepare_mapped_model("username/repo_name") == "username/repo_name"
assert helper._prepare_mapped_model("https://any-url.com") == "https://any-url.com"
mocker.patch(
"huggingface_hub.inference._providers.hf_inference._fetch_recommended_models",
return_value={"text-classification": "username/repo_name"},
)
assert helper._prepare_mapped_model(None) == "username/repo_name"
with pytest.raises(ValueError, match="Task unknown-task has no recommended model"):
assert HFInferenceTask("unknown-task")._prepare_mapped_model(None)
def test_prepare_url(self):
helper = HFInferenceTask("text-classification")
assert (
helper._prepare_url("hf_test_token", "username/repo_name")
== "https://router.huggingface.co/hf-inference/models/username/repo_name"
)
assert helper._prepare_url("hf_test_token", "https://any-url.com") == "https://any-url.com"
def test_prepare_payload_as_dict(self):
helper = HFInferenceTask("text-classification")
assert helper._prepare_payload_as_dict(
"dummy text input",
parameters={"a": 1, "b": None},
mapped_model="username/repo_name",
) == {
"inputs": "dummy text input",
"parameters": {"a": 1},
}
with pytest.raises(ValueError, match="Unexpected binary input for task text-classification."):
helper._prepare_payload_as_dict(b"dummy binary data", {}, "username/repo_name")
def test_prepare_payload_as_bytes(self):
helper = HFInferenceBinaryInputTask("image-classification")
assert (
helper._prepare_payload_as_bytes(
b"dummy binary input",
parameters={},
mapped_model="username/repo_name",
extra_payload=None,
)
== b"dummy binary input"
)
assert (
helper._prepare_payload_as_bytes(
b"dummy binary input",
parameters={"a": 1, "b": None},
mapped_model="username/repo_name",
extra_payload={"extra": "payload"},
)
== b'{"inputs": "ZHVtbXkgYmluYXJ5IGlucHV0", "parameters": {"a": 1}, "extra": "payload"}'
# base64.b64encode(b"dummy binary input")
)
def test_conversational_url(self):
helper = HFInferenceConversational()
helper._prepare_url(
"hf_test_token", "username/repo_name"
) == "https://router.huggingface.co/hf-inference/models/username/repo_name/v1/chat/completions"
helper._prepare_url("hf_test_token", "https://any-url.com") == "https://any-url.com/v1/chat/completions"
helper._prepare_url("hf_test_token", "https://any-url.com/v1") == "https://any-url.com/v1/chat/completions"
def test_prepare_request(self):
helper = HFInferenceTask("text-classification")
request = helper.prepare_request(
inputs="this is a dummy input",
parameters={},
headers={},
model="username/repo_name",
api_key="hf_test_token",
)
assert request.url == "https://router.huggingface.co/hf-inference/models/username/repo_name"
assert request.task == "text-classification"
assert request.model == "username/repo_name"
assert request.headers["authorization"] == "Bearer hf_test_token"
assert request.json == {"inputs": "this is a dummy input", "parameters": {}}
def test_prepare_request_conversational(self):
helper = HFInferenceConversational()
request = helper.prepare_request(
inputs=[{"role": "user", "content": "dummy text input"}],
parameters={},
headers={},
model="username/repo_name",
api_key="hf_test_token",
)
assert (
request.url == "https://router.huggingface.co/hf-inference/models/username/repo_name/v1/chat/completions"
)
assert request.task == "text-generation"
assert request.model == "username/repo_name"
assert request.json == {
"model": "username/repo_name",
"messages": [{"role": "user", "content": "dummy text input"}],
}
class TestHyperbolicProvider:
def test_prepare_route(self):
"""Test route preparation for different tasks."""
helper = HyperbolicTextToImageTask()
assert helper._prepare_route("username/repo_name") == "/v1/images/generations"
helper = HyperbolicTextGenerationTask("text-generation")
assert helper._prepare_route("username/repo_name") == "/v1/chat/completions"
helper = HyperbolicTextGenerationTask("conversational")
assert helper._prepare_route("username/repo_name") == "/v1/chat/completions"
def test_prepare_payload_conversational(self):
"""Test payload preparation for conversational task."""
helper = HyperbolicTextGenerationTask("conversational")
payload = helper._prepare_payload_as_dict(
[{"role": "user", "content": "Hello!"}], {"temperature": 0.7}, "meta-llama/Llama-3.2-3B-Instruct"
)
assert payload == {
"messages": [{"role": "user", "content": "Hello!"}],
"temperature": 0.7,
"model": "meta-llama/Llama-3.2-3B-Instruct",
}
def test_prepare_payload_text_to_image(self):
"""Test payload preparation for text-to-image task."""
helper = HyperbolicTextToImageTask()
payload = helper._prepare_payload_as_dict(
"a beautiful cat",
{
"num_inference_steps": 30,
"guidance_scale": 7.5,
"width": 512,
"height": 512,
"seed": 42,
},
"stabilityai/sdxl",
)
assert payload == {
"prompt": "a beautiful cat",
"steps": 30, # renamed from num_inference_steps
"cfg_scale": 7.5, # renamed from guidance_scale
"width": 512,
"height": 512,
"seed": 42,
"model_name": "stabilityai/sdxl",
}
def test_text_to_image_get_response(self):
"""Test response handling for text-to-image task."""
helper = HyperbolicTextToImageTask()
dummy_image = b"image_bytes"
response = helper.get_response({"images": [{"image": base64.b64encode(dummy_image).decode()}]})
assert response == dummy_image
class TestNebiusProvider:
def test_prepare_route_text_to_image(self):
helper = NebiusTextToImageTask()
assert helper._prepare_route("username/repo_name") == "/v1/images/generations"
def test_prepare_payload_as_dict_text_to_image(self):
helper = NebiusTextToImageTask()
payload = helper._prepare_payload_as_dict(
"a beautiful cat",
{"num_inference_steps": 10, "width": 512, "height": 512, "guidance_scale": 7.5},
"black-forest-labs/flux-schnell",
)
assert payload == {
"prompt": "a beautiful cat",
"response_format": "b64_json",
"width": 512,
"height": 512,
"num_inference_steps": 10,
"model": "black-forest-labs/flux-schnell",
}
def test_text_to_image_get_response(self):
helper = NebiusTextToImageTask()
response = helper.get_response({"data": [{"b64_json": base64.b64encode(b"image_bytes").decode()}]})
assert response == b"image_bytes"
class TestNovitaProvider:
def test_prepare_url_text_generation(self):
helper = NovitaTextGenerationTask()
url = helper._prepare_url("novita_token", "username/repo_name")
assert url == "https://api.novita.ai/v3/openai/completions"
def test_prepare_url_conversational(self):
helper = NovitaConversationalTask()
url = helper._prepare_url("novita_token", "username/repo_name")
assert url == "https://api.novita.ai/v3/openai/chat/completions"
class TestReplicateProvider:
def test_prepare_headers(self):
helper = ReplicateTask("text-to-image")
headers = helper._prepare_headers({}, "my_replicate_key")
headers["Prefer"] == "wait"
headers["authorization"] == "Bearer my_replicate_key"
def test_prepare_route(self):
helper = ReplicateTask("text-to-image")
# No model version
url = helper._prepare_route("black-forest-labs/FLUX.1-schnell")
assert url == "/v1/models/black-forest-labs/FLUX.1-schnell/predictions"
# Model with specific version
url = helper._prepare_route("black-forest-labs/FLUX.1-schnell:1944af04d098ef")
assert url == "/v1/predictions"
def test_prepare_payload_as_dict(self):
helper = ReplicateTask("text-to-image")
# No model version
payload = helper._prepare_payload_as_dict(
"a beautiful cat", {"num_inference_steps": 20}, "black-forest-labs/FLUX.1-schnell"
)
assert payload == {"input": {"prompt": "a beautiful cat", "num_inference_steps": 20}}
# Model with specific version
payload = helper._prepare_payload_as_dict(
"a beautiful cat", {"num_inference_steps": 20}, "black-forest-labs/FLUX.1-schnell:1944af04d098ef"
)
assert payload == {
"input": {"prompt": "a beautiful cat", "num_inference_steps": 20},
"version": "1944af04d098ef",
}
def test_text_to_speech_payload(self):
helper = ReplicateTextToSpeechTask()
payload = helper._prepare_payload_as_dict(
"Hello world", {}, "hexgrad/Kokoro-82M:f559560eb822dc509045f3921a1921234918b91739db4bf3daab2169b71c7a13"
)
assert payload == {
"input": {"text": "Hello world"},
"version": "f559560eb822dc509045f3921a1921234918b91739db4bf3daab2169b71c7a13",
}
def test_get_response_timeout(self):
helper = ReplicateTask("text-to-image")
with pytest.raises(TimeoutError, match="Inference request timed out after 60 seconds."):
helper.get_response({"model": "black-forest-labs/FLUX.1-schnell"}) # no 'output' key
def test_get_response_single_output(self, mocker):
helper = ReplicateTask("text-to-image")
mock = mocker.patch("huggingface_hub.inference._providers.replicate.get_session")
response = helper.get_response({"output": "https://example.com/image.jpg"})
mock.return_value.get.assert_called_once_with("https://example.com/image.jpg")
assert response == mock.return_value.get.return_value.content
class TestSambanovaProvider:
def test_prepare_url(self):
helper = SambanovaConversationalTask()
assert (
helper._prepare_url("sambanova_token", "username/repo_name")
== "https://api.sambanova.ai/v1/chat/completions"
)
class TestTogetherProvider:
def test_prepare_route_text_to_image(self):
helper = TogetherTextToImageTask()
assert helper._prepare_route("username/repo_name") == "/v1/images/generations"
def test_prepare_payload_as_dict_text_to_image(self):
helper = TogetherTextToImageTask()
payload = helper._prepare_payload_as_dict(
"a beautiful cat",
{"num_inference_steps": 10, "guidance_scale": 1, "width": 512, "height": 512},
"black-forest-labs/FLUX.1-schnell",
)
assert payload == {
"prompt": "a beautiful cat",
"response_format": "base64",
"width": 512,
"height": 512,
"steps": 10, # renamed field
"guidance": 1, # renamed field
"model": "black-forest-labs/FLUX.1-schnell",
}
def test_text_to_image_get_response(self):
helper = TogetherTextToImageTask()
response = helper.get_response({"data": [{"b64_json": base64.b64encode(b"image_bytes").decode()}]})
assert response == b"image_bytes"
class TestBaseConversationalTask:
def test_prepare_route(self):
helper = BaseConversationalTask(provider="test-provider", base_url="https://api.test.com")
assert helper._prepare_route("dummy-model") == "/v1/chat/completions"
assert helper.task == "conversational"
def test_prepare_payload(self):
helper = BaseConversationalTask(provider="test-provider", base_url="https://api.test.com")
messages = [{"role": "user", "content": "Hello!"}]
parameters = {"temperature": 0.7, "max_tokens": 100}
payload = helper._prepare_payload_as_dict(
inputs=messages,
parameters=parameters,
mapped_model="test-model",
)
assert payload == {
"messages": messages,
"temperature": 0.7,
"max_tokens": 100,
"model": "test-model",
}
class TestBaseTextGenerationTask:
def test_prepare_route(self):
helper = BaseTextGenerationTask(provider="test-provider", base_url="https://api.test.com")
assert helper._prepare_route("dummy-model") == "/v1/completions"
assert helper.task == "text-generation"
def test_prepare_payload(self):
helper = BaseTextGenerationTask(provider="test-provider", base_url="https://api.test.com")
prompt = "Once upon a time"
parameters = {"temperature": 0.7, "max_tokens": 100}
payload = helper._prepare_payload_as_dict(
inputs=prompt,
parameters=parameters,
mapped_model="test-model",
)
assert payload == {
"prompt": prompt,
"temperature": 0.7,
"max_tokens": 100,
"model": "test-model",
}
@pytest.mark.parametrize(
"dict1, dict2, expected",
[
# Basic merge with non-overlapping keys
({"a": 1}, {"b": 2}, {"a": 1, "b": 2}),
# Overwriting a key
({"a": 1}, {"a": 2}, {"a": 2}),
# Empty dict merge
({}, {"a": 1}, {"a": 1}),
({"a": 1}, {}, {"a": 1}),
({}, {}, {}),
# Nested dictionary merge
(
{"a": {"b": 1}},
{"a": {"c": 2}},
{"a": {"b": 1, "c": 2}},
),
# Overwriting nested dictionary key
(
{"a": {"b": 1}},
{"a": {"b": 2}},
{"a": {"b": 2}},
),
# Deep merge
(
{"a": {"b": {"c": 1}}},
{"a": {"b": {"d": 2}}},
{"a": {"b": {"c": 1, "d": 2}}},
),
# Overwriting a nested value with a non-dict type
(
{"a": {"b": {"c": 1}}},
{"a": {"b": 2}},
{"a": {"b": 2}}, # Overwrites dict with integer
),
# Merging dictionaries with different types
(
{"a": 1},
{"a": {"b": 2}},
{"a": {"b": 2}}, # Overwrites int with dict
),
],
)
def test_recursive_merge(dict1: Dict, dict2: Dict, expected: Dict):
initial_dict1 = dict1.copy()
initial_dict2 = dict2.copy()
assert recursive_merge(dict1, dict2) == expected
# does not mutate the inputs
assert dict1 == initial_dict1
assert dict2 == initial_dict2