-
Notifications
You must be signed in to change notification settings - Fork 631
/
Copy pathtest_serialization.py
802 lines (657 loc) · 29.2 KB
/
test_serialization.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
import json
import struct
from pathlib import Path
from typing import TYPE_CHECKING, Dict, List
from unittest.mock import Mock
import pytest
from pytest_mock import MockerFixture
from huggingface_hub import constants
from huggingface_hub.serialization import (
get_tf_storage_size,
get_torch_storage_size,
load_state_dict_from_file,
load_torch_model,
save_torch_model,
save_torch_state_dict,
split_state_dict_into_shards_factory,
split_torch_state_dict_into_shards,
)
from huggingface_hub.serialization._base import parse_size_to_int
from huggingface_hub.serialization._torch import _load_sharded_checkpoint
from .testing_utils import requires
if TYPE_CHECKING:
import torch
def _dummy_get_storage_id(item):
return None
def _dummy_get_storage_size(item):
return sum(item)
# util functions for checking the version for pytorch
def is_wrapper_tensor_subclass_available():
try:
from torch.utils._python_dispatch import is_traceable_wrapper_subclass # type: ignore[import] # noqa: F401
return True
except ImportError:
return False
@pytest.fixture
def dummy_state_dict() -> Dict[str, List[int]]:
return {
"layer_1": [6],
"layer_2": [10],
"layer_3": [30],
"layer_4": [2],
"layer_5": [2],
}
@pytest.fixture
def torch_state_dict() -> Dict[str, "torch.Tensor"]:
try:
import torch
return {
"layer_1": torch.tensor([4]),
"layer_2": torch.tensor([10]),
"layer_3": torch.tensor([30]),
"layer_4": torch.tensor([2]),
"layer_5": torch.tensor([2]),
}
except ImportError:
pytest.skip("torch is not available")
@pytest.fixture
def dummy_model():
try:
import torch
class DummyModel(torch.nn.Module):
"""Simple model for testing that matches the state dict `torch_state_dict` fixture."""
def __init__(self):
super().__init__()
self.register_parameter("layer_1", torch.nn.Parameter(torch.tensor([4.0])))
self.register_parameter("layer_2", torch.nn.Parameter(torch.tensor([10.0])))
self.register_parameter("layer_3", torch.nn.Parameter(torch.tensor([30.0])))
self.register_parameter("layer_4", torch.nn.Parameter(torch.tensor([2.0])))
self.register_parameter("layer_5", torch.nn.Parameter(torch.tensor([2.0])))
return DummyModel()
except ImportError:
pytest.skip("torch is not available")
@pytest.fixture
def torch_state_dict_tensor_subclass() -> Dict[str, "torch.Tensor"]:
try:
import torch # type: ignore[import]
from torch.testing._internal.two_tensor import TwoTensor # type: ignore[import]
t = torch.tensor([4])
return {
"layer_1": torch.tensor([4]),
"layer_2": torch.tensor([10]),
"layer_3": torch.tensor([30]),
"layer_4": torch.tensor([2]),
"layer_5": torch.tensor([2]),
"layer_6": TwoTensor(t, t),
}
except ImportError:
pytest.skip("torch is not available")
@pytest.fixture
def torch_state_dict_shared_layers() -> Dict[str, "torch.Tensor"]:
try:
import torch # type: ignore[import]
shared_layer = torch.tensor([4])
return {
"shared_1": shared_layer,
"unique_1": torch.tensor([10]),
"unique_2": torch.tensor([30]),
"shared_2": shared_layer,
}
except ImportError:
pytest.skip("torch is not available")
@pytest.fixture
def torch_state_dict_shared_layers_tensor_subclass() -> Dict[str, "torch.Tensor"]:
try:
import torch # type: ignore[import]
from torch.testing._internal.two_tensor import TwoTensor # type: ignore[import]
t = torch.tensor([4])
tensor_subclass_tensor = TwoTensor(t, t)
t = torch.tensor([4])
shared_tensor_subclass_tensor = TwoTensor(t, t)
return {
"layer_1": torch.tensor([4]),
"layer_2": torch.tensor([10]),
"layer_3": torch.tensor([30]),
"layer_4": torch.tensor([2]),
"layer_5": torch.tensor([2]),
"layer_6": tensor_subclass_tensor,
"ts_shared_1": shared_tensor_subclass_tensor,
"ts_shared_2": shared_tensor_subclass_tensor,
}
except ImportError:
pytest.skip("torch is not available")
def test_single_shard(dummy_state_dict):
state_dict_split = split_state_dict_into_shards_factory(
dummy_state_dict,
get_storage_id=_dummy_get_storage_id,
get_storage_size=_dummy_get_storage_size,
max_shard_size=100, # large shard size => only one shard
filename_pattern="file{suffix}.dummy",
)
assert not state_dict_split.is_sharded
assert state_dict_split.filename_to_tensors == {
# All layers fit in one shard => no suffix in filename
"file.dummy": ["layer_1", "layer_2", "layer_3", "layer_4", "layer_5"],
}
assert state_dict_split.tensor_to_filename == {
"layer_1": "file.dummy",
"layer_2": "file.dummy",
"layer_3": "file.dummy",
"layer_4": "file.dummy",
"layer_5": "file.dummy",
}
assert state_dict_split.metadata == {"total_size": 50}
def test_multiple_shards(dummy_state_dict):
state_dict_split = split_state_dict_into_shards_factory(
dummy_state_dict,
get_storage_id=_dummy_get_storage_id,
get_storage_size=_dummy_get_storage_size,
max_shard_size=10, # small shard size => multiple shards
filename_pattern="file{suffix}.dummy",
)
assert state_dict_split.is_sharded
assert state_dict_split.filename_to_tensors == {
# layer 4 and 5 could go in this one but assignment is not optimal, and it's fine
"file-00001-of-00004.dummy": ["layer_1"],
"file-00002-of-00004.dummy": ["layer_3"],
"file-00003-of-00004.dummy": ["layer_2"],
"file-00004-of-00004.dummy": ["layer_4", "layer_5"],
}
assert state_dict_split.tensor_to_filename == {
"layer_1": "file-00001-of-00004.dummy",
"layer_3": "file-00002-of-00004.dummy",
"layer_2": "file-00003-of-00004.dummy",
"layer_4": "file-00004-of-00004.dummy",
"layer_5": "file-00004-of-00004.dummy",
}
assert state_dict_split.metadata == {"total_size": 50}
def test_tensor_same_storage():
state_dict_split = split_state_dict_into_shards_factory(
{
"layer_1": [1],
"layer_2": [2],
"layer_3": [1],
"layer_4": [2],
"layer_5": [1],
},
get_storage_id=lambda x: (x[0]), # dummy for test: storage id based on first element
get_storage_size=_dummy_get_storage_size,
max_shard_size=1,
filename_pattern="model{suffix}.safetensors",
)
assert state_dict_split.is_sharded
assert state_dict_split.filename_to_tensors == {
"model-00001-of-00002.safetensors": ["layer_2", "layer_4"],
"model-00002-of-00002.safetensors": ["layer_1", "layer_3", "layer_5"],
}
assert state_dict_split.tensor_to_filename == {
"layer_1": "model-00002-of-00002.safetensors",
"layer_2": "model-00001-of-00002.safetensors",
"layer_3": "model-00002-of-00002.safetensors",
"layer_4": "model-00001-of-00002.safetensors",
"layer_5": "model-00002-of-00002.safetensors",
}
assert state_dict_split.metadata == {"total_size": 3} # count them once
@requires("tensorflow")
def test_get_tf_storage_size():
import tensorflow as tf # type: ignore[import]
assert get_tf_storage_size(tf.constant([1, 2, 3, 4, 5], dtype=tf.float64)) == 5 * 8
assert get_tf_storage_size(tf.constant([1, 2, 3, 4, 5], dtype=tf.float16)) == 5 * 2
@requires("torch")
def test_get_torch_storage_size():
import torch # type: ignore[import]
assert get_torch_storage_size(torch.tensor([1, 2, 3, 4, 5], dtype=torch.float64)) == 5 * 8
assert get_torch_storage_size(torch.tensor([1, 2, 3, 4, 5], dtype=torch.float16)) == 5 * 2
@requires("torch")
@pytest.mark.skipif(not is_wrapper_tensor_subclass_available(), reason="requires torch 2.1 or higher")
def test_get_torch_storage_size_wrapper_tensor_subclass():
import torch # type: ignore[import]
from torch.testing._internal.two_tensor import TwoTensor # type: ignore[import]
t = torch.tensor([1, 2, 3, 4, 5], dtype=torch.float64)
assert get_torch_storage_size(TwoTensor(t, t)) == 5 * 8 * 2
t = torch.tensor([1, 2, 3, 4, 5], dtype=torch.float16)
assert get_torch_storage_size(TwoTensor(t, TwoTensor(t, t))) == 5 * 2 * 3
def test_parse_size_to_int():
assert parse_size_to_int("1KB") == 1 * 10**3
assert parse_size_to_int("2MB") == 2 * 10**6
assert parse_size_to_int("3GB") == 3 * 10**9
assert parse_size_to_int(" 10 KB ") == 10 * 10**3 # ok with whitespace
assert parse_size_to_int("20mb") == 20 * 10**6 # ok with lowercase
with pytest.raises(ValueError, match="Unit 'IB' not supported"):
parse_size_to_int("1KiB") # not a valid unit
with pytest.raises(ValueError, match="Could not parse the size value"):
parse_size_to_int("1ooKB") # not a float
def test_save_torch_model(mocker: MockerFixture, tmp_path: Path) -> None:
"""Test `save_torch_model` is only a wrapper around `save_torch_state_dict`."""
model_mock = Mock()
safe_state_dict_mock = mocker.patch("huggingface_hub.serialization._torch.save_torch_state_dict")
save_torch_model(
model_mock,
save_directory=tmp_path,
filename_pattern="my-pattern",
force_contiguous=True,
max_shard_size="3GB",
metadata={"foo": "bar"},
safe_serialization=True,
is_main_process=True,
shared_tensors_to_discard=None,
)
safe_state_dict_mock.assert_called_once_with(
state_dict=model_mock.state_dict.return_value,
save_directory=tmp_path,
filename_pattern="my-pattern",
force_contiguous=True,
max_shard_size="3GB",
metadata={"foo": "bar"},
safe_serialization=True,
is_main_process=True,
shared_tensors_to_discard=None,
)
def test_save_torch_state_dict_not_sharded(tmp_path: Path, torch_state_dict: Dict[str, "torch.Tensor"]) -> None:
"""Save as safetensors without sharding."""
save_torch_state_dict(torch_state_dict, tmp_path, max_shard_size="1GB")
assert (tmp_path / "model.safetensors").is_file()
assert not (tmp_path / "model.safetensors.index.json").is_file()
def test_save_torch_state_dict_sharded(tmp_path: Path, torch_state_dict: Dict[str, "torch.Tensor"]) -> None:
"""Save as safetensors with sharding."""
save_torch_state_dict(torch_state_dict, tmp_path, max_shard_size=30)
assert not (tmp_path / "model.safetensors").is_file()
assert (tmp_path / "model.safetensors.index.json").is_file()
assert (tmp_path / "model-00001-of-00002.safetensors").is_file()
assert (tmp_path / "model-00001-of-00002.safetensors").is_file()
assert json.loads((tmp_path / "model.safetensors.index.json").read_text("utf-8")) == {
"metadata": {"total_size": 40},
"weight_map": {
"layer_1": "model-00001-of-00002.safetensors",
"layer_2": "model-00001-of-00002.safetensors",
"layer_3": "model-00001-of-00002.safetensors",
"layer_4": "model-00002-of-00002.safetensors",
"layer_5": "model-00002-of-00002.safetensors",
},
}
def test_save_torch_state_dict_unsafe_not_sharded(
tmp_path: Path, caplog: pytest.LogCaptureFixture, torch_state_dict: Dict[str, "torch.Tensor"]
) -> None:
"""Save as pickle without sharding."""
with caplog.at_level("WARNING"):
save_torch_state_dict(torch_state_dict, tmp_path, max_shard_size="1GB", safe_serialization=False)
assert "we strongly recommend using safe serialization" in caplog.text
assert (tmp_path / "pytorch_model.bin").is_file()
assert not (tmp_path / "pytorch_model.bin.index.json").is_file()
@pytest.mark.skipif(not is_wrapper_tensor_subclass_available(), reason="requires torch 2.1 or higher")
def test_save_torch_state_dict_tensor_subclass_unsafe_not_sharded(
tmp_path: Path, caplog: pytest.LogCaptureFixture, torch_state_dict_tensor_subclass: Dict[str, "torch.Tensor"]
) -> None:
"""Save as pickle without sharding."""
with caplog.at_level("WARNING"):
save_torch_state_dict(
torch_state_dict_tensor_subclass, tmp_path, max_shard_size="1GB", safe_serialization=False
)
assert "we strongly recommend using safe serialization" in caplog.text
assert (tmp_path / "pytorch_model.bin").is_file()
assert not (tmp_path / "pytorch_model.bin.index.json").is_file()
@pytest.mark.skipif(not is_wrapper_tensor_subclass_available(), reason="requires torch 2.1 or higher")
def test_save_torch_state_dict_shared_layers_tensor_subclass_unsafe_not_sharded(
tmp_path: Path,
caplog: pytest.LogCaptureFixture,
torch_state_dict_shared_layers_tensor_subclass: Dict[str, "torch.Tensor"],
) -> None:
"""Save as pickle without sharding."""
with caplog.at_level("WARNING"):
save_torch_state_dict(
torch_state_dict_shared_layers_tensor_subclass, tmp_path, max_shard_size="1GB", safe_serialization=False
)
assert "we strongly recommend using safe serialization" in caplog.text
assert (tmp_path / "pytorch_model.bin").is_file()
assert not (tmp_path / "pytorch_model.bin.index.json").is_file()
def test_save_torch_state_dict_unsafe_sharded(
tmp_path: Path, caplog: pytest.LogCaptureFixture, torch_state_dict: Dict[str, "torch.Tensor"]
) -> None:
"""Save as pickle with sharding."""
# Check logs
with caplog.at_level("WARNING"):
save_torch_state_dict(torch_state_dict, tmp_path, max_shard_size=30, safe_serialization=False)
assert "we strongly recommend using safe serialization" in caplog.text
assert not (tmp_path / "pytorch_model.bin").is_file()
assert (tmp_path / "pytorch_model.bin.index.json").is_file()
assert (tmp_path / "pytorch_model-00001-of-00002.bin").is_file()
assert (tmp_path / "pytorch_model-00001-of-00002.bin").is_file()
assert json.loads((tmp_path / "pytorch_model.bin.index.json").read_text("utf-8")) == {
"metadata": {"total_size": 40},
"weight_map": {
"layer_1": "pytorch_model-00001-of-00002.bin",
"layer_2": "pytorch_model-00001-of-00002.bin",
"layer_3": "pytorch_model-00001-of-00002.bin",
"layer_4": "pytorch_model-00002-of-00002.bin",
"layer_5": "pytorch_model-00002-of-00002.bin",
},
}
def test_save_torch_state_dict_shared_layers_not_sharded(
tmp_path: Path, torch_state_dict_shared_layers: Dict[str, "torch.Tensor"]
) -> None:
from safetensors.torch import load_file
save_torch_state_dict(torch_state_dict_shared_layers, tmp_path, safe_serialization=True)
safetensors_file = tmp_path / "model.safetensors"
assert safetensors_file.is_file()
# Check shared layer not duplicated in file
state_dict = load_file(safetensors_file)
assert "shared_1" in state_dict
assert "shared_2" not in state_dict
# Check shared layer info in metadata
file_bytes = safetensors_file.read_bytes()
metadata_str = file_bytes[
8 : struct.unpack("<Q", file_bytes[:8])[0] + 8
].decode() # TODO: next time add helper for this
assert json.loads(metadata_str)["__metadata__"]["shared_2"] == "shared_1"
def test_save_torch_state_dict_shared_layers_sharded(
tmp_path: Path, torch_state_dict_shared_layers: Dict[str, "torch.Tensor"]
) -> None:
from safetensors.torch import load_file
save_torch_state_dict(torch_state_dict_shared_layers, tmp_path, max_shard_size=2, safe_serialization=True)
index_file = tmp_path / "model.safetensors.index.json"
assert index_file.is_file()
# Check shared layer info in index metadata
index = json.loads(index_file.read_text())
assert index["metadata"]["shared_2"] == "shared_1"
# Check shared layer not duplicated in files
for filename in index["weight_map"].values():
state_dict = load_file(tmp_path / filename)
assert "shared_2" not in state_dict
def test_save_torch_state_dict_discard_selected_sharded(
tmp_path: Path, torch_state_dict_shared_layers: Dict[str, "torch.Tensor"]
) -> None:
from safetensors.torch import load_file
save_torch_state_dict(
torch_state_dict_shared_layers,
tmp_path,
max_shard_size=2,
safe_serialization=True,
shared_tensors_to_discard=["shared_1"],
)
index_file = tmp_path / "model.safetensors.index.json"
index = json.loads(index_file.read_text())
assert index["metadata"]["shared_1"] == "shared_2"
for filename in index["weight_map"].values():
state_dict = load_file(tmp_path / filename)
assert "shared_1" not in state_dict
def test_save_torch_state_dict_discard_selected_not_sharded(
tmp_path: Path, torch_state_dict_shared_layers: Dict[str, "torch.Tensor"]
) -> None:
from safetensors.torch import load_file
save_torch_state_dict(
torch_state_dict_shared_layers,
tmp_path,
safe_serialization=True,
shared_tensors_to_discard=["shared_1"],
)
safetensors_file = tmp_path / "model.safetensors"
assert safetensors_file.is_file()
# Check shared layer not duplicated in file
state_dict = load_file(safetensors_file)
assert "shared_1" not in state_dict
assert "shared_2" in state_dict
# Check shared layer info in metadata
file_bytes = safetensors_file.read_bytes()
metadata_str = file_bytes[
8 : struct.unpack("<Q", file_bytes[:8])[0] + 8
].decode() # TODO: next time add helper for this
assert json.loads(metadata_str)["__metadata__"]["shared_1"] == "shared_2"
def test_split_torch_state_dict_into_shards(
tmp_path: Path, torch_state_dict_shared_layers_tensor_subclass: Dict[str, "torch.Tensor"]
):
# the model size is 72, setting max_shard_size to 32 means we'll shard the file
state_dict_split = split_torch_state_dict_into_shards(
torch_state_dict_shared_layers_tensor_subclass,
filename_pattern=constants.PYTORCH_WEIGHTS_FILE_PATTERN,
max_shard_size=32,
)
assert state_dict_split.is_sharded
def test_save_torch_state_dict_custom_filename(tmp_path: Path, torch_state_dict: Dict[str, "torch.Tensor"]) -> None:
"""Custom filename pattern is respected."""
# Not sharded
save_torch_state_dict(torch_state_dict, tmp_path, filename_pattern="model.variant{suffix}.safetensors")
assert (tmp_path / "model.variant.safetensors").is_file()
# Sharded
save_torch_state_dict(
torch_state_dict, tmp_path, filename_pattern="model.variant{suffix}.safetensors", max_shard_size=30
)
assert (tmp_path / "model.variant.safetensors.index.json").is_file()
assert (tmp_path / "model.variant-00001-of-00002.safetensors").is_file()
assert (tmp_path / "model.variant-00002-of-00002.safetensors").is_file()
def test_save_torch_state_dict_delete_existing_files(
tmp_path: Path, torch_state_dict: Dict[str, "torch.Tensor"]
) -> None:
"""Directory is cleaned before saving new files."""
(tmp_path / "model.safetensors").touch()
(tmp_path / "model.safetensors.index.json").touch()
(tmp_path / "model-00001-of-00003.safetensors").touch()
(tmp_path / "model-00002-of-00003.safetensors").touch()
(tmp_path / "model-00003-of-00003.safetensors").touch()
(tmp_path / "pytorch_model.bin").touch()
(tmp_path / "pytorch_model.bin.index.json").touch()
(tmp_path / "pytorch_model-00001-of-00003.bin").touch()
(tmp_path / "pytorch_model-00002-of-00003.bin").touch()
(tmp_path / "pytorch_model-00003-of-00003.bin").touch()
save_torch_state_dict(torch_state_dict, tmp_path)
assert (tmp_path / "model.safetensors").stat().st_size > 0 # new file
# Previous shards have been deleted
assert not (tmp_path / "model.safetensors.index.json").is_file() # deleted
assert not (tmp_path / "model-00001-of-00003.safetensors").is_file() # deleted
assert not (tmp_path / "model-00002-of-00003.safetensors").is_file() # deleted
assert not (tmp_path / "model-00003-of-00003.safetensors").is_file() # deleted
# But not previous pickle files (since saving as safetensors)
assert (tmp_path / "pytorch_model.bin").is_file() # not deleted
assert (tmp_path / "pytorch_model.bin.index.json").is_file()
assert (tmp_path / "pytorch_model-00001-of-00003.bin").is_file()
assert (tmp_path / "pytorch_model-00002-of-00003.bin").is_file()
assert (tmp_path / "pytorch_model-00003-of-00003.bin").is_file()
def test_save_torch_state_dict_not_main_process(
tmp_path: Path,
torch_state_dict: Dict[str, "torch.Tensor"],
) -> None:
"""
Test that previous files in the directory are not deleted when is_main_process=False.
When is_main_process=True, previous files should be deleted,
this is already tested in `test_save_torch_state_dict_delete_existing_files`.
"""
# Create some .safetensors files before saving a new state dict.
(tmp_path / "model.safetensors").touch()
(tmp_path / "model-00001-of-00002.safetensors").touch()
(tmp_path / "model-00002-of-00002.safetensors").touch()
(tmp_path / "model.safetensors.index.json").touch()
# Save with is_main_process=False
save_torch_state_dict(torch_state_dict, tmp_path, is_main_process=False)
# Previous files should still exist (not deleted)
assert (tmp_path / "model.safetensors").is_file()
assert (tmp_path / "model-00001-of-00002.safetensors").is_file()
assert (tmp_path / "model-00002-of-00002.safetensors").is_file()
assert (tmp_path / "model.safetensors.index.json").is_file()
@requires("torch")
def test_load_state_dict_from_file(tmp_path: Path, torch_state_dict: Dict[str, "torch.Tensor"]):
"""Test saving and loading a state dict with both safetensors and pickle formats."""
import torch # type: ignore[import]
# Test safetensors format (default)
save_torch_state_dict(torch_state_dict, tmp_path)
loaded_dict = load_state_dict_from_file(tmp_path / "model.safetensors")
assert isinstance(loaded_dict, dict)
assert set(loaded_dict.keys()) == set(torch_state_dict.keys())
for key in torch_state_dict:
assert torch.equal(loaded_dict[key], torch_state_dict[key])
# Test PyTorch pickle format
save_torch_state_dict(torch_state_dict, tmp_path, safe_serialization=False)
loaded_dict = load_state_dict_from_file(tmp_path / "pytorch_model.bin")
assert isinstance(loaded_dict, dict)
assert set(loaded_dict.keys()) == set(torch_state_dict.keys())
for key in torch_state_dict:
assert torch.equal(loaded_dict[key], torch_state_dict[key])
@requires("torch")
def test_load_sharded_state_dict(
tmp_path: Path,
torch_state_dict: Dict[str, "torch.Tensor"],
dummy_model: "torch.nn.Module",
):
"""Test saving and loading a sharded state dict."""
import torch
save_torch_state_dict(
torch_state_dict,
save_directory=tmp_path,
max_shard_size=30, # Small size to force sharding
)
# Verify sharding occurred
index_file = tmp_path / "model.safetensors.index.json"
assert index_file.exists()
# Load and verify content
result = _load_sharded_checkpoint(dummy_model, tmp_path)
assert not result.missing_keys
assert not result.unexpected_keys
# Verify tensor values
loaded_state_dict = dummy_model.state_dict()
for key in torch_state_dict:
assert torch.equal(loaded_state_dict[key], torch_state_dict[key])
@requires("torch")
def test_load_from_directory_not_sharded(
tmp_path: Path, torch_state_dict: Dict[str, "torch.Tensor"], dummy_model: "torch.nn.Module"
):
import torch
save_torch_state_dict(torch_state_dict, save_directory=tmp_path)
# Verify no sharding occurred
index_file = tmp_path / "model.safetensors.index.json"
assert not index_file.exists()
result = load_torch_model(dummy_model, tmp_path)
assert not result.missing_keys
assert not result.unexpected_keys
loaded_state_dict = dummy_model.state_dict()
for key in torch_state_dict:
assert torch.equal(loaded_state_dict[key], torch_state_dict[key])
@pytest.mark.parametrize("safe_serialization", [True, False])
def test_load_state_dict_missing_file(safe_serialization):
"""Test proper error handling when file is missing."""
with pytest.raises(FileNotFoundError, match="No checkpoint file found"):
load_state_dict_from_file(
"nonexistent.safetensors" if safe_serialization else "nonexistent.bin",
weights_only=False,
)
def test_load_torch_model_directory_does_not_exist():
"""Test proper error handling when directory does not contain a valid checkpoint."""
with pytest.raises(ValueError, match="Checkpoint path does_not_exist does not exist"):
load_torch_model(Mock(), "does_not_exist")
def test_load_torch_model_directory_does_not_contain_checkpoint(tmp_path):
"""Test proper error handling when directory does not contain a valid checkpoint."""
with pytest.raises(ValueError, match=r"Directory .* does not contain a valid checkpoint."):
load_torch_model(Mock(), tmp_path)
@pytest.mark.parametrize(
"strict",
[
True,
False,
],
)
def test_load_sharded_model_strict_mode(tmp_path, torch_state_dict, dummy_model, strict):
"""Test loading model with strict mode behavior for both sharded and non-sharded checkpoints."""
import torch
# Add an extra key to the state dict
modified_dict = {**torch_state_dict, "extra_key": torch.tensor([1.0])}
# Save checkpoint
save_torch_state_dict(
modified_dict,
save_directory=tmp_path,
max_shard_size=30,
)
if strict:
with pytest.raises(RuntimeError, match=".*Unexpected key.*"):
result = load_torch_model(
model=dummy_model,
checkpoint_path=tmp_path,
strict=strict,
)
else:
result = load_torch_model(
model=dummy_model,
checkpoint_path=tmp_path,
strict=strict,
)
assert "extra_key" in result.unexpected_keys
def test_load_torch_model_with_filename_pattern(tmp_path, torch_state_dict, dummy_model):
"""Test loading a model with a custom filename pattern."""
import torch
save_torch_state_dict(
torch_state_dict,
save_directory=tmp_path,
filename_pattern="model.variant{suffix}.safetensors",
)
result = load_torch_model(
dummy_model,
tmp_path,
filename_pattern="model.variant{suffix}.safetensors",
)
assert not result.missing_keys
assert not result.unexpected_keys
loaded_state_dict = dummy_model.state_dict()
for key in torch_state_dict:
assert torch.equal(loaded_state_dict[key], torch_state_dict[key])
@pytest.mark.parametrize(
"filename_pattern, safe, files_exist, expected_filename_pattern",
[
(
None,
True,
["model.safetensors.index.json"],
constants.SAFETENSORS_WEIGHTS_FILE_PATTERN,
), # safetensors exists and safe=True -> load safetensors
(
None,
False,
["pytorch_model.bin.index.json"],
constants.PYTORCH_WEIGHTS_FILE_PATTERN,
), # only picle file exists and safe=False -> load pickle files
(
None,
False,
["model.safetensors.index.json", "pytorch_model.bin.index.json"],
constants.SAFETENSORS_WEIGHTS_FILE_PATTERN,
), # both exist and safe=False -> load safetensors
(
"model.variant{suffix}.safetensors",
False,
["model.variant.safetensors.index.json", "pytorch_model.bin.index.json"],
"model.variant{suffix}.safetensors",
), # both exist and safe=False -> load safetensors
# `filename_pattern` takes precedence over `safe` parameter
(
"model.variant{suffix}.bin",
False,
["model.variant.safetensors.index.json", "model.variant.bin.index.json"],
"model.variant{suffix}.bin",
), # custom filename pattern and safe=False -> load custom file index
(
"model.variant{suffix}.bin",
True,
["model.variant.safetensors.index.json", "model.variant.bin.index.json"],
"model.variant{suffix}.bin",
), # custom filename pattern and safe=False -> load custom file index
],
)
@requires("torch")
def test_load_torch_model_index_selection(
tmp_path: Path,
filename_pattern,
safe,
files_exist,
expected_filename_pattern,
mocker,
):
"""Test the logic for selecting between safetensors and pytorch index files."""
import torch
class SimpleModel(torch.nn.Module):
def __init__(self):
super().__init__()
self.layer_1 = torch.nn.Parameter(torch.tensor([0.0]))
model = SimpleModel()
# Create specified index files
for filename in files_exist:
(tmp_path / filename).touch()
# Mock _load_sharded_checkpoint to capture the safe parameter
mock_load = mocker.patch("huggingface_hub.serialization._torch._load_sharded_checkpoint")
load_torch_model(model, tmp_path, safe=safe, filename_pattern=filename_pattern)
mock_load.assert_called_once()
assert mock_load.call_args.kwargs["filename_pattern"] == expected_filename_pattern