diff --git a/docker/Dockerfile.intel b/docker/Dockerfile.intel index a7f1dc978f..ad4ff63e8c 100644 --- a/docker/Dockerfile.intel +++ b/docker/Dockerfile.intel @@ -27,8 +27,6 @@ RUN --mount=type=cache,id=apt-dev,target=/var/cache/apt \ libpng-dev \ python3 \ python3-pip \ - python3-dev \ - libnuma-dev \ && rm -rf /var/lib/apt/lists/*" RUN /usr/sbin/update-ccache-symlinks RUN mkdir /opt/ccache && ccache --set-config=cache_dir=/opt/ccache @@ -46,7 +44,7 @@ RUN python3 -m pip install --no-cache-dir \ -f https://download.pytorch.org/whl/torch_stable.html && \ python3 -m pip install intel-extension-for-pytorch==$IPEX_VERSION && \ python3 -m pip install oneccl_bind_pt --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/cpu/us/ && \ - python3 -m pip install --no-cache-dir numa + python3 -m pip install --no-cache-dir py-libnuma ARG KMP_BLOCKTIME=1 ENV KMP_BLOCKTIME=${KMP_BLOCKTIME} diff --git a/optimum/intel/utils/import_utils.py b/optimum/intel/utils/import_utils.py index b696cdd01d..cfef5858e4 100644 --- a/optimum/intel/utils/import_utils.py +++ b/optimum/intel/utils/import_utils.py @@ -144,7 +144,7 @@ if _numa_available: try: - importlib_metadata.version("numa") + importlib_metadata.version("py-libnuma") except importlib_metadata.PackageNotFoundError: _numa_available = False diff --git a/optimum/intel/utils/modeling_utils.py b/optimum/intel/utils/modeling_utils.py index aff939996b..460b2d47fc 100644 --- a/optimum/intel/utils/modeling_utils.py +++ b/optimum/intel/utils/modeling_utils.py @@ -196,7 +196,7 @@ def bind_cores_for_best_perf(): if not is_numa_available(): logger.error("'numa' module not found") - raise ImportError("'numa' module not found, install with 'pip install numa'") + raise ImportError("'numa' module not found, install with 'pip install py-libnuma'") import numa local_size = get_int_from_env( @@ -205,7 +205,7 @@ def bind_cores_for_best_perf(): rank_id = get_int_from_env( ["LOCAL_RANK", "MPI_LOCALRANKID", "OMPI_COMM_WORLD_LOCAL_RANK", "MV2_COMM_WORLD_LOCAL_RANK"], 0 ) - nodes = numa.get_max_node() + 1 + nodes = numa.info.get_max_node() + 1 rank_per_node = math.ceil(local_size / nodes) num_cpus_per_nodes = int(psutil.cpu_count(logical=False) / nodes) node_id = int(rank_id / rank_per_node) @@ -216,17 +216,17 @@ def bind_cores_for_best_perf(): else: num_cpus_per_rank = int(os.getenv("OMP_NUM_THREADS")) logger.info(f"OMP_NUM_THREADS already set to {num_cpus_per_rank}") - if len(numa.get_membind()) == nodes: + if len(numa.memory.get_membind_nodes()) == nodes: # if numa memory binding is not set, set it to the node where the rank is running - numa.set_membind([node_id]) + numa.memory.set_membind_nodes((node_id)) torch.set_num_threads(num_cpus_per_rank) - if len(numa.get_affinity(0)) == psutil.cpu_count(logical=True): + if len(numa.schedule.get_affinitive_cpus(0)) == psutil.cpu_count(logical=True): # if numa affinity is unset (default value is set to all logical cores) set it to the physical cores assigned to the rank cpu_start = num_cpus_per_rank * rank_offset_per_node - numa.set_affinity( + numa.schedule.run_on_cpus( 0, - list(numa.node_to_cpus(node_id))[cpu_start : cpu_start + num_cpus_per_rank], + *(numa.info.node_to_cpus(node_id)[cpu_start : cpu_start + num_cpus_per_rank]), ) - logger.info(f"affinity={numa.get_affinity(0)}, membind = {numa.get_membind()}") + logger.info(f"affinity={numa.schedule.get_affinitive_cpus(0)}, membind = {numa.memory.get_membind_nodes()}")