forked from niconielsen32/ComputerVision
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhoughTransform.cpp
102 lines (75 loc) · 2.9 KB
/
houghTransform.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
#include <iostream>
#include <vector>
#include <opencv2/core.hpp>
#include <opencv2/highgui.hpp>
#include <opencv2/imgproc.hpp>
using namespace std;
using namespace cv;
int main() {
Mat imgLines, imgCircles, detectImgLines, detectImgLinesP, detectImgCircles;
imgLines = imread("/Users/kemik/OneDrive/Skrivebord/lines.jpg");
imgCircles = imread("/Users/kemik/OneDrive/Skrivebord/circles.jpg");
imgLines.copyTo(detectImgLines);
imgLines.copyTo(detectImgLinesP);
imgCircles.copyTo(detectImgCircles);
// Line Detection Hough Transform
// Edge detection
Canny(imgLines, detectImgLines, 200, 255);
// Standard Hough Line Transform
vector<Vec2f> lines; // will hold the results of the detection
HoughLines(detectImgLines, lines, 1, CV_PI, 150); // runs the actual detection
// Draw the lines
for (size_t i = 0; i < lines.size(); i++)
{
float rho = lines[i][0], theta = lines[i][1];
Point pt1, pt2;
double a = cos(theta), b = sin(theta);
double x0 = a * rho, y0 = b * rho;
pt1.x = cvRound(x0 + 1000 * (-b));
pt1.y = cvRound(y0 + 1000 * (a));
pt2.x = cvRound(x0 - 1000 * (-b));
pt2.y = cvRound(y0 - 1000 * (a));
line(detectImgLines, pt1, pt2, Scalar(0, 0, 255), 3, LINE_AA);
}
// Display
imshow("Original Line Image", imgLines);
imshow("Line Detection", detectImgLines);
waitKey(0);
// Probabilistic Line Transform
Canny(imgLines, detectImgLinesP, 200, 255);
vector<Vec4i> linesP; // will hold the results of the detection
HoughLinesP(detectImgLinesP, linesP, 1, CV_PI / 180, 50, 50, 10); // runs the actual detection
// Draw the lines
for (size_t i = 0; i < linesP.size(); i++)
{
Vec4i l = linesP[i];
line(detectImgLinesP, Point(l[0], l[1]), Point(l[2], l[3]), Scalar(0, 0, 255), 1, LINE_AA);
}
imshow("Original Line Image", imgLines);
imshow("Line Detection P", detectImgLinesP);
waitKey(0);
// Circle Detection Hough Transform
Mat gray;
cvtColor(imgCircles, gray, COLOR_RGB2GRAY);
medianBlur(gray, gray, 5);
vector<Vec3f> circles;
HoughCircles(gray, circles, HOUGH_GRADIENT, 1,
gray.rows / 16, // change this value to detect circles with different distances to each other
100, 30, 200, 500 // change the last two parameters
// (min_radius & max_radius) to detect larger circles
);
for (size_t i = 0; i < circles.size(); i++)
{
Vec3i c = circles[i];
Point center = Point(c[0], c[1]);
// circle center
circle(detectImgCircles, center, 1, Scalar(0, 100, 100), 3, LINE_AA);
// circle outline
int radius = c[2];
circle(detectImgCircles, center, radius, Scalar(255, 0, 255), 3, LINE_AA);
}
imshow("Original Circle Image", imgCircles);
imshow("Circle Detection", detectImgCircles);
waitKey(0);
return 0;
}