-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathunet.py
192 lines (150 loc) · 7.15 KB
/
unet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
import torch.nn as nn
import torch
import torch.nn as nn
import torch.nn.functional as F
from .common import *
class ListModule(nn.Module):
def __init__(self, *args):
super(ListModule, self).__init__()
idx = 0
for module in args:
self.add_module(str(idx), module)
idx += 1
def __getitem__(self, idx):
if idx >= len(self._modules):
raise IndexError('index {} is out of range'.format(idx))
if idx < 0:
idx = len(self) + idx
it = iter(self._modules.values())
for i in range(idx):
next(it)
return next(it)
def __iter__(self):
return iter(self._modules.values())
def __len__(self):
return len(self._modules)
class UNet(nn.Module):
'''
upsample_mode in ['deconv', 'nearest', 'bilinear']
pad in ['zero', 'replication', 'none']
'''
def __init__(self, num_input_channels=3, num_output_channels=3,
feature_scale=4, more_layers=0, concat_x=False,
upsample_mode='deconv', pad='zero', norm_layer=nn.InstanceNorm2d, need_sigmoid=True, need_bias=True):
super(UNet, self).__init__()
self.feature_scale = feature_scale
self.more_layers = more_layers
self.concat_x = concat_x
filters = [64, 128, 256, 512, 1024]
filters = [x // self.feature_scale for x in filters]
self.start = unetConv2(num_input_channels, filters[0] if not concat_x else filters[0] - num_input_channels, norm_layer, need_bias, pad)
self.down1 = unetDown(filters[0], filters[1] if not concat_x else filters[1] - num_input_channels, norm_layer, need_bias, pad)
self.down2 = unetDown(filters[1], filters[2] if not concat_x else filters[2] - num_input_channels, norm_layer, need_bias, pad)
self.down3 = unetDown(filters[2], filters[3] if not concat_x else filters[3] - num_input_channels, norm_layer, need_bias, pad)
self.down4 = unetDown(filters[3], filters[4] if not concat_x else filters[4] - num_input_channels, norm_layer, need_bias, pad)
# more downsampling layers
if self.more_layers > 0:
self.more_downs = [
unetDown(filters[4], filters[4] if not concat_x else filters[4] - num_input_channels , norm_layer, need_bias, pad) for i in range(self.more_layers)]
self.more_ups = [unetUp(filters[4], upsample_mode, need_bias, pad, same_num_filt =True) for i in range(self.more_layers)]
self.more_downs = ListModule(*self.more_downs)
self.more_ups = ListModule(*self.more_ups)
self.up4 = unetUp(filters[3], upsample_mode, need_bias, pad)
self.up3 = unetUp(filters[2], upsample_mode, need_bias, pad)
self.up2 = unetUp(filters[1], upsample_mode, need_bias, pad)
self.up1 = unetUp(filters[0], upsample_mode, need_bias, pad)
self.final = conv(filters[0], num_output_channels, 1, bias=need_bias, pad=pad)
if need_sigmoid:
self.final = nn.Sequential(self.final, nn.Sigmoid())
def forward(self, inputs):
# Downsample
downs = [inputs]
down = nn.AvgPool2d(2, 2)
for i in range(4 + self.more_layers):
downs.append(down(downs[-1]))
in64 = self.start(inputs)
if self.concat_x:
in64 = torch.cat([in64, downs[0]], 1)
down1 = self.down1(in64)
if self.concat_x:
down1 = torch.cat([down1, downs[1]], 1)
down2 = self.down2(down1)
if self.concat_x:
down2 = torch.cat([down2, downs[2]], 1)
down3 = self.down3(down2)
if self.concat_x:
down3 = torch.cat([down3, downs[3]], 1)
down4 = self.down4(down3)
if self.concat_x:
down4 = torch.cat([down4, downs[4]], 1)
if self.more_layers > 0:
prevs = [down4]
for kk, d in enumerate(self.more_downs):
# print(prevs[-1].size())
out = d(prevs[-1])
if self.concat_x:
out = torch.cat([out, downs[kk + 5]], 1)
prevs.append(out)
up_ = self.more_ups[-1](prevs[-1], prevs[-2])
for idx in range(self.more_layers - 1):
l = self.more_ups[self.more - idx - 2]
up_= l(up_, prevs[self.more - idx - 2])
else:
up_= down4
up4= self.up4(up_, down3)
up3= self.up3(up4, down2)
up2= self.up2(up3, down1)
up1= self.up1(up2, in64)
return self.final(up1)
class unetConv2(nn.Module):
def __init__(self, in_size, out_size, norm_layer, need_bias, pad):
super(unetConv2, self).__init__()
print(pad)
if norm_layer is not None:
self.conv1= nn.Sequential(conv(in_size, out_size, 3, bias=need_bias, pad=pad),
norm_layer(out_size),
nn.ReLU(),)
self.conv2= nn.Sequential(conv(out_size, out_size, 3, bias=need_bias, pad=pad),
norm_layer(out_size),
nn.ReLU(),)
else:
self.conv1= nn.Sequential(conv(in_size, out_size, 3, bias=need_bias, pad=pad),
nn.ReLU(),)
self.conv2= nn.Sequential(conv(out_size, out_size, 3, bias=need_bias, pad=pad),
nn.ReLU(),)
def forward(self, inputs):
outputs= self.conv1(inputs)
outputs= self.conv2(outputs)
return outputs
class unetDown(nn.Module):
def __init__(self, in_size, out_size, norm_layer, need_bias, pad):
super(unetDown, self).__init__()
self.conv= unetConv2(in_size, out_size, norm_layer, need_bias, pad)
self.down= nn.MaxPool2d(2, 2)
def forward(self, inputs):
outputs= self.down(inputs)
outputs= self.conv(outputs)
return outputs
class unetUp(nn.Module):
def __init__(self, out_size, upsample_mode, need_bias, pad, same_num_filt=False):
super(unetUp, self).__init__()
num_filt = out_size if same_num_filt else out_size * 2
if upsample_mode == 'deconv':
self.up= nn.ConvTranspose2d(num_filt, out_size, 4, stride=2, padding=1)
self.conv= unetConv2(out_size * 2, out_size, None, need_bias, pad)
elif upsample_mode=='bilinear' or upsample_mode=='nearest':
self.up = nn.Sequential(nn.Upsample(scale_factor=2, mode=upsample_mode),
conv(num_filt, out_size, 3, bias=need_bias, pad=pad))
self.conv= unetConv2(out_size * 2, out_size, None, need_bias, pad)
else:
assert False
def forward(self, inputs1, inputs2):
in1_up= self.up(inputs1)
if (inputs2.size(2) != in1_up.size(2)) or (inputs2.size(3) != in1_up.size(3)):
diff2 = (inputs2.size(2) - in1_up.size(2)) // 2
diff3 = (inputs2.size(3) - in1_up.size(3)) // 2
inputs2_ = inputs2[:, :, diff2 : diff2 + in1_up.size(2), diff3 : diff3 + in1_up.size(3)]
else:
inputs2_ = inputs2
output= self.conv(torch.cat([in1_up, inputs2_], 1))
return output