-
Notifications
You must be signed in to change notification settings - Fork 39
/
Copy pathSimdMixer.cpp
246 lines (230 loc) · 7.07 KB
/
SimdMixer.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
#include "SimdMixer.hpp"
#include "BitCount.hpp"
#include "Squash.hpp"
//the compiler needs to see these implementations for inlining + optimization
#include "MixerFunctions_SIMD_None.hpp"
#include "MixerFunctions_SIMD_SSE2.hpp"
#include "MixerFunctions_SIMD_AVX2.hpp"
#include "MixerFunctions_SIMD_AVX512.hpp"
#include "MixerFunctions_SIMD_Neon.hpp"
ALWAYS_INLINE
static int scaleDotProduct(int dp, int scaleFactor) {
return (dp * scaleFactor) >> 16;
}
ALWAYS_INLINE
static int clipDotProduct(int dp) {
if (dp < -2047) {
dp = -2047;
}
else if (dp > 2047) {
dp = 2047;
}
return dp;
}
ALWAYS_INLINE
static void addDotProductToNextMixer(Mixer* mp, int dp) {
mp->add(dp);
}
ALWAYS_INLINE
static int processDotProduct(Mixer* mp, int dp, int scaleFactor) {
dp = scaleDotProduct(dp, scaleFactor);
dp = clipDotProduct(dp);
addDotProductToNextMixer(mp, dp);
const int pr = squash(dp);
return pr;
}
[[gnu::cold]] [[gnu::noinline]]
static int updateLearningRate_Adaptive(ErrorInfo& info, int rate, const int err) {
const uint32_t logErr = min(0xF, ilog2(abs(err)));
info.sum -= square(info.data[1] >> 28);
info.data[1] <<= 4;
info.data[1] |= info.data[0] >> 28;
info.data[0] <<= 4;
info.data[0] |= logErr;
info.sum += square(logErr);
info.collected += info.collected < 4096;
info.mask <<= 1;
info.mask |= (logErr <= ((info.data[0] >> 4) & 0xF));
const uint32_t count = bitCount(info.mask);
if (info.collected >= 64 && (info.sum > 1500 + uint32_t(rate >> 10) || count < 9 || (info.mask & 0xFF) == 0)) {
rate = 7 * 65536;
info.reset();
}
else if (info.collected == 4096 && info.sum >= 56 && info.sum <= 144 && count > 28 - uint32_t(rate >> 16) &&
((info.mask & 0xFF) == 0xFF)) {
rate = max(rate - 65536, 2 * 65536);
info.reset();
}
return rate;
}
ALWAYS_INLINE
static int updateLearningRate(const bool isAdaptiveLearningRate, ErrorInfo& info, int rate, const int err, const int lowerLimitOfLearningRate) {
if (isAdaptiveLearningRate)
rate = updateLearningRate_Adaptive(info, rate, err);
//linear learning rate decay
if (rate > lowerLimitOfLearningRate)
rate--;
return rate;
}
/**
* Define SIMD padding requirements.
*/
template<SIMDType simd>
constexpr int SIMDMixer<simd>::simdWidth() const {
if (simd == SIMDType::SIMD_AVX512) {
return 64 / sizeof(short); // 512 bit (64 byte) data size
}
else if (simd == SIMDType::SIMD_AVX2) {
return 32 / sizeof(short); // 256 bit (32 byte) data size
}
else if (simd == SIMDType::SIMD_SSE2 || simd == SIMDType::SIMD_NEON) {
return 16 / sizeof(short); // 128 bit (16 byte) data size
}
else if (simd == SIMDType::SIMD_NONE) {
return 4 / sizeof(short); // Processes 2 shorts at once -> width is 4 bytes
}
else {
static_assert("Unknown SIMD parameter");
}
}
template<SIMDType simd>
SIMDMixer<simd>::SIMDMixer(const Shared* const sh, const int n, const int m, const int s, const int promoted) :
Mixer(sh, ((n + (simdWidth() - 1)) & -(simdWidth())), m, s) {
assert((this->n & (simdWidth() - 1)) == 0);
assert(this->m > 0);
assert(this->s > 0);
mp = (s > 1) ? new SIMDMixer<simd>(sh, s + promoted, 1, 1, 0) : nullptr;
}
template<SIMDType simd>
SIMDMixer<simd>::~SIMDMixer() {
delete mp;
}
template<SIMDType simd>
void SIMDMixer<simd>::setScaleFactor(const int sf0, const int sf1) {
scaleFactor = sf0;
if (mp) {
mp->setScaleFactor(sf1, 0);
}
}
template<SIMDType simd>
void SIMDMixer<simd>::promote(int x) {
if (mp != nullptr)
mp->add(x);
}
/**
* Adjust weights to minimize coding cost of last prediction.
* Trains the network where the expected output is the last bit (in the shared variable y).
*/
template<SIMDType simd>
void SIMDMixer<simd>::update() {
INJECT_SHARED_y
const int target = y << 12;
if (nx > 0) {
for (uint64_t i = 0; i < numContexts; ++i) {
int err = target - pr[i];
const int rate = rates[i] = updateLearningRate(isAdaptiveLearningRate, info[i], rates[i], err, lowerLimitOfLearningRate);
if (simd == SIMDType::SIMD_NONE) {
trainSimdNone(&tx[0], &wx[cxt[i] * n], nx, (err * rate) >> 16);
}
#ifdef X64_SIMD_AVAILABLE
else if (simd == SIMDType::SIMD_SSE2) {
trainSimdSse2(&tx[0], &wx[cxt[i] * n], nx, (err * rate) >> 16);
}
else if (simd == SIMDType::SIMD_AVX2) {
trainSimdAvx2(&tx[0], &wx[cxt[i] * n], nx, (err * rate) >> 16);
}
else if (simd == SIMDType::SIMD_AVX512) {
trainSimdAvx512(&tx[0], &wx[cxt[i] * n], nx, (err * rate) >> 16);
}
#endif
#ifdef ARM_NEON_AVAILABLE
else if (simd == SIMDType::SIMD_NEON) {
trainSimdNeon(&tx[0], &wx[cxt[i] * n], nx, (err * rate) >> 16);
}
#endif
else {
static_assert("Unknown SIMD parameter");
}
}
}
reset();
}
/**
* Predict next bit
* @return prediction
*/
template<SIMDType simd>
int SIMDMixer<simd>::p() {
shared->GetUpdateBroadcaster()->subscribe(this);
assert(scaleFactor > 0);
//if(mp)printf("nx: %d, numContexts: %d, base: %d\n",nx, numContexts, base); //for debugging: how many inputs do we have?
while (nx & (simdWidth() - 1)) {
tx[nx++] = 0; // pad
}
if (mp != nullptr) { // first mixer layer
for (uint64_t i = 0; i < numContexts; ++i) {
int dp = 0;
if (simd == SIMDType::SIMD_NONE) {
dp = dotProductSimdNone(&tx[0], &wx[cxt[i] * n], nx);
}
#ifdef X64_SIMD_AVAILABLE
else if (simd == SIMDType::SIMD_SSE2) {
dp = dotProductSimdSse2(&tx[0], &wx[cxt[i] * n], nx);
}
else if (simd == SIMDType::SIMD_AVX2) {
dp = dotProductSimdAvx2(&tx[0], &wx[cxt[i] * n], nx);
}
else if (simd == SIMDType::SIMD_AVX512) {
dp = dotProductSimdAvx512(&tx[0], &wx[cxt[i] * n], nx);
}
#endif
#ifdef ARM_NEON_AVAILABLE
else if (simd == SIMDType::SIMD_NEON) {
dp = dotProductSimdNeon(&tx[0], &wx[cxt[i] * n], nx);
}
#endif
else {
static_assert("Unknown SIMD parameter");
}
pr[i] = processDotProduct(mp, dp, scaleFactor);
}
mp->set(0, 1);
return mp->p();
}
else { // secont (last) mixer layer
int dp;
if (simd == SIMDType::SIMD_NONE) {
dp = dotProductSimdNone(&tx[0], &wx[cxt[0] * n], nx);
}
#ifdef X64_SIMD_AVAILABLE
else if (simd == SIMDType::SIMD_SSE2) {
dp = dotProductSimdSse2(&tx[0], &wx[cxt[0] * n], nx);
}
else if (simd == SIMDType::SIMD_AVX2) {
dp = dotProductSimdAvx2(&tx[0], &wx[cxt[0] * n], nx);
}
else if (simd == SIMDType::SIMD_AVX512) {
dp = dotProductSimdAvx512(&tx[0], &wx[cxt[0] * n], nx);
}
#endif
#ifdef ARM_NEON_AVAILABLE
else if (simd == SIMDType::SIMD_NEON) {
dp = dotProductSimdNeon(&tx[0], &wx[cxt[0] * n], nx);
}
#endif
else {
static_assert("Unknown SIMD parameter");
}
dp = scaleDotProduct(dp, scaleFactor);
return pr[0] = squash(dp);
}
}
template class SIMDMixer<SIMDType::SIMD_NONE>;
#ifdef X64_SIMD_AVAILABLE
template class SIMDMixer<SIMDType::SIMD_SSE2>;
template class SIMDMixer<SIMDType::SIMD_AVX2>;
template class SIMDMixer<SIMDType::SIMD_AVX512>;
#endif
#ifdef ARM_NEON_AVAILABLE
template class SIMDMixer<SIMDType::SIMD_NEON>;
#endif