forked from SAITPublic/MLPerf_Training_v2.0
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmlperf_logger.py
92 lines (65 loc) · 2.12 KB
/
mlperf_logger.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
import collections
import os
import subprocess
import torch
from mlperf_logging import mllog
from mlperf_logging.mllog import constants
mllogger = mllog.get_mllogger()
def log_start(*args, **kwargs):
_log_print(mllogger.start, *args, **kwargs)
def log_end(*args, **kwargs):
_log_print(mllogger.end, *args, **kwargs)
def log_event(*args, **kwargs):
_log_print(mllogger.event, *args, **kwargs)
def _log_print(logger, *args, **kwargs):
if kwargs.pop('sync', False):
barrier()
if 'stack_offset' not in kwargs:
kwargs['stack_offset'] = 3
if 'value' not in kwargs:
kwargs['value'] = None
if kwargs.pop('log_all_ranks', False):
log = True
else:
log = (get_rank() == 0)
if log:
logger(*args, **kwargs)
def barrier():
"""
Works as a temporary distributed barrier, currently pytorch
doesn't implement barrier for NCCL backend.
Calls all_reduce on dummy tensor and synchronizes with GPU.
"""
if torch.distributed.is_available() and torch.distributed.is_initialized():
torch.distributed.all_reduce(torch.cuda.FloatTensor(1))
torch.cuda.synchronize()
def get_rank():
"""
Gets distributed rank or returns zero if distributed is not initialized.
"""
if torch.distributed.is_available() and torch.distributed.is_initialized():
rank = torch.distributed.get_rank()
else:
rank = 0
return rank
def mlperf_submission_log(benchmark):
num_nodes = os.environ.get('TASK_NNODES', 1)
mllog.config(filename=os.path.join(os.path.dirname(os.path.abspath(__file__)), f'{benchmark}.log'))
mllogger = mllog.get_mllogger()
mllogger.logger.propagate = False
log_event(
key=constants.SUBMISSION_BENCHMARK,
value=benchmark,
)
log_event(
key=constants.SUBMISSION_ORG,
value='SAMSUNG')
log_event(
key=constants.SUBMISSION_DIVISION,
value='open')
log_event(
key=constants.SUBMISSION_STATUS,
value='onprem')
log_event(
key=constants.SUBMISSION_PLATFORM,
value=f'{num_nodes}xNVIDIA DGX A100')