-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathTrain_cifar_FasTEN.py
258 lines (205 loc) · 9.14 KB
/
Train_cifar_FasTEN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
from __future__ import print_function
import argparse
import os
import random
import sys
from pathlib import Path
import torch.backends.cudnn as cudnn
import torch.optim as optim
from dataloader.FasTEN import dataloader_cifar as dataloader
from dataloader.downloader_cifar import CifarDownloader
from model.cifar.ResNet import *
from utils.value_aggregator import *
parser = argparse.ArgumentParser(description='PyTorch CIFAR Training')
# Method
parser.add_argument('--method', default='FasTEN', type=str)
parser.add_argument('--use_correction', default=True, type=bool, help='Use correction.')
parser.add_argument('--thres_upper', default=0.80, type=float, help='threshold')
parser.add_argument('--lambda_n', default=0.5, type=float, help='noisy loss weight')
# Dataset
parser.add_argument('--dataset', default='cifar100', type=str)
parser.add_argument('--num_clean', default=1000, type=int)
parser.add_argument('--use_valid', default=True, type=bool, help='Use validation set for training.')
parser.add_argument('--root_path', default='nas/workspace/harris/public/cifar', type=str, help='path to dataset')
# Optimization
parser.add_argument('--batch_size', default=100, type=int, help='train batchsize')
parser.add_argument('--lr', default=0.1, type=float, help='initial learning rate')
parser.add_argument('--num_epochs', default=70, type=int)
# Noise setting
parser.add_argument('--noise_mode', default='sym')
parser.add_argument('--r', default=0.2, type=float, help='noise ratio')
# Etc.
parser.add_argument('--id', default='')
parser.add_argument('--seed', default=123)
parser.add_argument('--gpuid', default=0, type=int)
parser.add_argument('--prefetch', default=0, type=int)
parser.add_argument('--exp', default='exp_test', type=str)
args = parser.parse_args()
args.num_classes = {
"cifar10": 10,
"cifar100": 100
}[args.dataset]
args.data_path = {
"cifar10": f"{args.root_path}/cifar-10-batches-py",
"cifar100": f"{args.root_path}/cifar-100-python"
}[args.dataset]
args.nPerImage = {
"cifar10": 10,
"cifar100": 1,
}[args.dataset]
print(args)
torch.cuda.set_device(args.gpuid)
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
torch.cuda.manual_seed_all(args.seed)
def save_checkpoint(state, checkpoint_dir, filename='model_best.pth.tar'):
torch.save(state, checkpoint_dir / filename)
def load_checkpoint(model, checkpoint_dir):
global best_prec1, start_epoch
model_path = checkpoint_dir / 'model_best.pth.tar'
if os.path.isfile(model_path):
print(f"=> loading checkpoint {model_path}")
checkpoint = torch.load(model_path)
model.load_state_dict(checkpoint["state_dict"])
return model
else:
print(f"=> no checkpoint found at {model_path}")
return model
# Training
def train(epoch, net, optimizer, trainloader, trainloader_c, args):
global best_prec1, start_epoch, save_path, relabels
net.train()
num_iter = (len(trainloader.dataset) // args.batch_size) + 1
for batch_idx, (input_noisy, label_noisy, index) in enumerate(trainloader):
input_clean, label_clean = next(iter(trainloader_c))
input_noisy, label_noisy = input_noisy.cuda(), label_noisy.cuda()
input_clean, label_clean = input_clean.cuda(), label_clean.cuda()
y_noisy_n, y_clean_n = net(input_noisy)
y_noisy_c, y_clean_c = net(input_clean)
pre1 = torch.softmax(y_clean_n, dim=1) # p(y|x)
if args.use_correction:
# Apply cleansing
thres_upper = args.thres_upper
max_prob, relabel = torch.max(pre1, dim=1)
corrected_inst = max_prob.ge(thres_upper)
# Get new label
new_label = (~corrected_inst) * label_noisy + corrected_inst * relabel
# Get noisy label from prev relabels
label_noisy = torch.tensor(relabels[index]).cuda()
# Label correction
new_label_cpu = new_label.cpu().detach().numpy()
relabels[index] = new_label_cpu.tolist()
# Estimate transition matrix
prob_noisy_c = torch.softmax(y_noisy_c, dim=1)
c_hat = (prob_noisy_c.reshape(args.num_classes, args.nPerImage, -1)).mean(dim=1)
c_hat = c_hat.detach()
c_hat_transpose = (c_hat).T
_c_hat_transpose = c_hat_transpose[label_noisy] # p(y_hat=j|y, x)
pre1 = torch.softmax(y_clean_n, dim=1) # p(y|x)
pre2 = torch.sum(_c_hat_transpose * pre1, dim=1) # p(y_hat=j|x) = sum_y[p(y_hat=j|y,x) * p(y|x)]
eps = 1e-7
l_c_n = -(torch.log(pre2 + eps))
l_c_c = F.cross_entropy(y_clean_c, label_clean, reduction="none")
l_c = torch.cat([l_c_n, l_c_c], dim=0).mean()
l_n = F.cross_entropy(y_noisy_n, label_noisy, reduction='mean')
loss = l_c + l_n * args.lambda_n
# compute gradient and do SGD step
optimizer.zero_grad()
loss.backward()
optimizer.step()
sys.stdout.write('\r')
sys.stdout.write('%s:%.1f-%s | Epoch [%3d/%3d] Iter[%3d/%3d]\t loss: %.2f'
% (args.dataset, args.r, args.noise_mode,
epoch, args.num_epochs, batch_idx + 1, num_iter, loss.item()))
sys.stdout.flush()
def test(epoch, net, loader, mode='test'):
global best_prec1, best_prec1_test, best_epoch
losses_test = AverageMeter()
top1_test = AverageMeter()
net.eval()
with torch.no_grad():
for batch_idx, (inputs, targets) in enumerate(loader):
inputs, targets = inputs.cuda(), targets.cuda()
_, outputs = net(inputs)
loss_test = F.cross_entropy(outputs, targets, reduction='mean')
prec_test = accuracy(outputs.data, targets.data, topk=(1,))[0]
losses_test.update(loss_test.data.item(), inputs.size(0))
top1_test.update(prec_test.item(), inputs.size(0))
loss_test = losses_test.avg
top1_test = top1_test.avg
print(f"\n| {mode} Epoch #%d\t{mode}_loss:%.2f\tAccuracy: %.2f%%\n" % (epoch, loss_test, top1_test))
test_log.write(f'Epoch:%d {mode}_loss:%.2f\tAccuracy:%.2f\n' % (epoch, loss_test, top1_test))
test_log.flush()
if (mode == 'test') and (epoch == best_epoch):
best_prec1_test = top1_test
if mode == 'valid':
best_prec1 = max(top1_test, best_prec1)
if best_prec1 == top1_test:
best_epoch = epoch
checkpoint_dict = {
"epoch": epoch,
"arch": "ResNet34",
"state_dict": net.state_dict(),
"best_acc1": best_prec1,
"optimizer": optimizer.state_dict(),
}
save_checkpoint(
checkpoint_dict,
checkpoint_dir=save_path,
filename="model_best.pth.tar".format(epoch)
)
print(f"Best Valid Prec@1 is {best_prec1} at epoch {best_epoch}")
else:
print(f"Test Prec@1 is {top1_test}\t Best Test Prec@1 is {best_prec1_test}")
def create_model():
model = ResNet34(num_classes=args.num_classes)
model = model.cuda()
return model
if __name__ == '__main__':
start_epoch = 1
accum_flops = 0
best_prec1 = 0
best_prec1_test = 0
best_epoch = 0
save_dir = '../checkpoint'
save_path = Path(os.path.join(save_dir, args.exp))
if not os.path.exists(save_path):
os.makedirs(save_path)
test_log = open(f'{save_dir}/%s_%.1f_%s' % (args.dataset, args.r, args.noise_mode) + '_acc.txt', 'w')
cifar_downloader = CifarDownloader(args.root_path, dataset=args.dataset)
cifar_downloader.download()
loader = dataloader.cifar_dataloader(args.dataset, r=args.r, noise_mode=args.noise_mode, batch_size=args.batch_size,
num_workers=0, data_dir=args.data_path)
print('| Building net')
net = create_model()
cudnn.benchmark = True
optimizer = optim.SGD(net.parameters(), lr=args.lr, momentum=0.9, weight_decay=5e-4)
if args.use_valid:
trainloader, trainloader_c, validloader = loader.run(mode='train', args=args)
print(f"Size of train noisy set : {len(trainloader.dataset)}")
print(f"Size of train clean set : {len(trainloader_c.dataset)}")
print(f"Size of valid set : {len(validloader.dataset)}")
else:
trainloader, trainloader_c = loader.run(mode='train', args=args)
print(f"Size of train noisy set : {len(trainloader.dataset)}")
print(f"Size of train clean set : {len(trainloader_c.dataset)}")
testloader = loader.run('test')
print(f"Size of test set : {len(testloader.dataset)}")
relabels = np.array(trainloader.dataset.train_label)
for epoch in range(start_epoch, args.num_epochs + 1):
lr = args.lr
if 60 > epoch >= 50:
lr /= 10
elif epoch >= 60:
lr /= 100
for param_group in optimizer.param_groups:
param_group['lr'] = lr
print('| Train Net')
train(epoch, net, optimizer, trainloader, trainloader_c, args)
if args.use_valid:
print('\n| Valid Net')
test(epoch, net, validloader, mode='valid')
print('\n| Test Net')
test(epoch, net, testloader, mode='test')
print(f"\n| Test Epoch@{best_epoch}\tAccuracy: %.2f%%\n" % (best_prec1_test))