-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
186 lines (158 loc) · 7.49 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
# Python
import random
import torch
import numpy as np
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
import torch.optim.lr_scheduler as lr_scheduler
from torch.utils.data.sampler import SubsetRandomSampler
import argparse
import os
# Custom
import models.resnet as resnet
from models.query_models import TDNet
from train_test.train_test import train, test
from data.load_dataset import load_dataset
from methods.selection_methods import query_samples
from config import *
parser = argparse.ArgumentParser()
parser.add_argument("-d", "--dataset", type=str, default="cifar10",
help="cifar10 / cifar100")
parser.add_argument("-i", "--imb_factor", type=int, default=1,
help="1 / 10 / 100")
parser.add_argument("--init_dist", type=str, default='random',
help="uniform / random.")
parser.add_argument("-m", "--method_type", type=str, default="TiDAL",
help="")
parser.add_argument("-c", "--cycles", type=int, default=10,
help="Number of active learning cycles")
parser.add_argument("-t", "--total", type=bool, default=False,
help="Training on the entire dataset")
parser.add_argument("--seed", type=int, default=0,
help="Training seed.")
parser.add_argument("--subset", type=int, default=10000,
help="The size of subset.")
parser.add_argument("-q", "--query", type=str, default='Entropy',
help="The size of subset. [Entropy, AUM]")
parser.add_argument("-w", "--num_workers", type=str, default=0,
help="The number of workers.")
args = parser.parse_args()
# Seed
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
torch.backends.cudnn.deterministic = True
# balanced setting
if args.imb_factor == 1:
args.add_num = {
'cifar10': 1000,
'cifar100': 2000,
}[args.dataset]
else:
args.add_num = {
'cifar10': 500,
'cifar100': 1000,
}[args.dataset]
args.subset = {
'cifar10': 10000,
'cifar100': 10000,
}[args.dataset]
args.initial_size = args.add_num
# Main
if __name__ == '__main__':
method = args.method_type
methods = ['Random', 'Entropy', 'BALD', 'CoreSet', 'lloss', 'TiDAL']
datasets = ['cifar10', 'cifar100']
assert method in methods, 'No method %s! Try options %s' % (method, methods)
assert args.dataset in datasets, 'No dataset %s! Try options %s' % (args.dataset, datasets)
'''
method_type: 'Random', 'Entropy', 'CoreSet', 'lloss', 'TiDAL'
'''
os.makedirs('../results', exist_ok=True)
txt_name = f'../results/results_{args.dataset}_{str(args.imb_factor)}_{str(args.method_type)}_{args.query}.txt'
results = open(txt_name, 'w')
print(txt_name)
print("Dataset: %s" % args.dataset)
print("Method type:%s" % method)
if args.total:
TRIALS = 1
CYCLES = 1
else:
CYCLES = args.cycles
for trial in range(TRIALS):
# Load training and testing dataset
data_train, data_unlabeled, data_test, adden, NO_CLASSES, no_train = load_dataset(args)
print('The entire datasize is {}'.format(len(data_train)))
NUM_TRAIN = no_train
indices = list(range(NUM_TRAIN))
if args.total:
labeled_set = indices
else:
labeled_set = indices[:args.add_num]
unlabeled_set = [x for x in indices if x not in labeled_set]
train_loader = DataLoader(data_train, batch_size=BATCH,
sampler=SubsetRandomSampler(labeled_set),
pin_memory=True, num_workers=args.num_workers)
test_loader = DataLoader(data_test, batch_size=BATCH,
pin_memory=True, num_workers=args.num_workers)
dataloaders = {'train': train_loader, 'test': test_loader}
# Model - create new instance for every trial so that it resets
with torch.cuda.device(CUDA_VISIBLE_DEVICES):
resnet_ = resnet.ResNet18(num_classes=NO_CLASSES)
if method in ['TiDAL', 'lloss']:
out_dim = NO_CLASSES if method == 'TiDAL' else 1
pred_module = TDNet(out_dim=out_dim)
if method in ['TiDAL', 'lloss']:
models = {'backbone': resnet_, 'module': pred_module}
else:
models = {'backbone': resnet_}
# Loss, criterion and scheduler (re)initialization
criterion = {}
criterion['CE'] = nn.CrossEntropyLoss(reduction='none')
criterion['KL_Div'] = nn.KLDivLoss(reduction='batchmean')
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
for key, val in models.items():
models[key] = models[key].to(device)
for cycle in range(CYCLES):
# Randomly sample 10000 unlabeled data points
if not args.total:
random.shuffle(unlabeled_set)
subset = unlabeled_set[:args.subset]
torch.backends.cudnn.benchmark = True
optim_backbone = optim.SGD(models['backbone'].parameters(), lr=LR,
momentum=MOMENTUM, weight_decay=WDECAY)
sched_backbone = lr_scheduler.MultiStepLR(optim_backbone, milestones=MILESTONES)
if method in ['TiDAL', 'lloss']:
optim_module = optim.SGD(models['module'].parameters(), lr=LR,
momentum=MOMENTUM, weight_decay=WDECAY)
sched_module = lr_scheduler.MultiStepLR(optim_module, milestones=MILESTONES)
optimizers = {'backbone': optim_backbone, 'module': optim_module}
schedulers = {'backbone': sched_backbone, 'module': sched_module}
else:
optimizers = {'backbone': optim_backbone}
schedulers = {'backbone': sched_backbone}
# Training and testing
train(models, method, criterion, optimizers, schedulers, dataloaders, EPOCH, EPOCHL)
acc = test(models, EPOCH, method, dataloaders, mode='test')
print('Trial {}/{} || Cycle {}/{} || Label set size {}: Test acc {}'.format(trial + 1, TRIALS, cycle + 1,
CYCLES, len(labeled_set), acc))
np.array([method, trial + 1, TRIALS, cycle + 1, CYCLES, len(labeled_set), acc]).tofile(results, sep=" ")
results.write("\n")
if cycle == (CYCLES - 1):
# Reached final training cycle
print("Finished.")
break
# Get the indices of the unlabeled samples to train on next cycle
arg = query_samples(models, method, data_unlabeled, subset, labeled_set, cycle, args)
# Update the labeled dataset and the unlabeled dataset, respectively
new_list = list(torch.tensor(subset)[arg][:args.add_num].numpy())
labeled_set += list(torch.tensor(subset)[arg][-args.add_num:].numpy())
listd = list(torch.tensor(subset)[arg][:-args.add_num].numpy())
unlabeled_set = listd + unlabeled_set[args.subset:]
print(len(labeled_set), min(labeled_set), max(labeled_set))
# Create a new dataloader for the updated labeled dataset
dataloaders['train'] = DataLoader(data_train, batch_size=BATCH,
sampler=SubsetRandomSampler(labeled_set),
pin_memory=True, num_workers=args.num_workers)
results.close()