forked from ant-research/cvpr2020-plant-pathology
-
Notifications
You must be signed in to change notification settings - Fork 0
/
generate_distill_submission.py
95 lines (79 loc) · 3.27 KB
/
generate_distill_submission.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
# @Author: yican, yelanlan
# @Date: 2020-07-07 14:48:03
# @Last Modified by: yican
# @Last Modified time: 2020-07-07 14:48:03
# Standard libraries
import pytorch_lightning as pl
from pytorch_lightning.callbacks import EarlyStopping
# Third party libraries
import torch
from scipy.special import softmax
from torch.utils.data import DataLoader
from tqdm import tqdm
# User defined libraries
from dataset import generate_transforms, PlantDataset
from train import CoolSystem
from utils import init_hparams, init_logger, seed_reproducer, load_data
if __name__ == "__main__":
# Make experiment reproducible
seed_reproducer(2020)
# Init Hyperparameters
hparams = init_hparams()
# init logger
logger = init_logger("kun_out", log_dir=hparams.log_dir)
# Load data
data, test_data = load_data(logger)
# Generate transforms
transforms = generate_transforms(hparams.image_size)
early_stop_callback = EarlyStopping(monitor="val_roc_auc", patience=10, mode="max", verbose=True)
# Instance Model, Trainer and train model
model = CoolSystem(hparams)
trainer = pl.Trainer(
gpus=hparams.gpus,
min_epochs=70,
max_epochs=hparams.max_epochs,
early_stop_callback=early_stop_callback,
progress_bar_refresh_rate=0,
precision=hparams.precision,
num_sanity_val_steps=0,
profiler=False,
weights_summary=None,
use_dp=True,
gradient_clip_val=hparams.gradient_clip_val,
)
submission = []
PATH = [
"logs_submit_distill/fold=0-epoch=59-val_loss=0.7352-val_roc_auc=0.9928.ckpt",
"logs_submit_distill/fold=1-epoch=28-val_loss=0.8069-val_roc_auc=0.9918.ckpt",
"logs_submit_distill/fold=2-epoch=28-val_loss=0.7605-val_roc_auc=0.9959.ckpt",
"logs_submit_distill/fold=3-epoch=66-val_loss=0.7628-val_roc_auc=0.9850.ckpt",
"logs_submit_distill/fold=4-epoch=32-val_loss=0.7845-val_roc_auc=0.9915.ckpt",
]
# ==============================================================================================================
# Test Submit
# ==============================================================================================================
test_dataset = PlantDataset(
test_data, transforms=transforms["train_transforms"], soft_labels_filename=hparams.soft_labels_filename
)
test_dataloader = DataLoader(
test_dataset, batch_size=64, shuffle=False, num_workers=hparams.num_workers, pin_memory=True, drop_last=False,
)
for path in PATH:
model.load_state_dict(torch.load(path)["state_dict"])
model.to("cuda")
model.eval()
for i in range(8):
test_preds = []
labels = []
with torch.no_grad():
for image, label, times in tqdm(test_dataloader):
test_preds.append(model(image.to("cuda")))
labels.append(label)
labels = torch.cat(labels)
test_preds = torch.cat(test_preds)
submission.append(test_preds.cpu().numpy())
submission_ensembled = 0
for sub in submission:
submission_ensembled += softmax(sub, axis=1) / len(submission)
test_data.iloc[:, 1:] = submission_ensembled
test_data.to_csv("submission_distill.csv", index=False)