-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtransport_model.py
131 lines (107 loc) · 4.28 KB
/
transport_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
from mesa import Agent, Model
from space import MultilayerNetworkSpace
from mesa.time import BaseScheduler
from mesa.datacollection import DataCollector
import networkx as nx
import numpy as np
from random import sample, randrange
class Travel_Agent(Agent):
def __init__(self, start_pos, dest, start_time, unique_id):
self.pos = start_pos
self.dest = dest
self.unique_id = unique_id
self.travel_time = start_time
def _probability_distribution(self, distances):
dists = np.array(distances, dtype=np.float)
# zero improvements have together half prob. as the smallest improvement
zeros = dists==0
zerodist = dists[dists.nonzero()].min()/ (2* sum(zeros) )
dists[dists == 0] = zerodist
dists = dists/dists.sum() # normalize
return dists
def step(self, model):
if self.pos == self.dest:
return # TODO: respawn or remove from scheduler?
dests = []
dists = []
season = model.get_season(self.travel_time) # what year is it?
if model.network.path_exists(self.pos, self.dest, season):
dist = model.network.shortest_path_to(self.pos, self.dest, season)
for neighbor in model.network.get_neighbors(self.pos, season):
n_dist = dist - model.network.shortest_path_to(neighbor, self.dest, season)
if n_dist < 0:
continue # no backtracking
dests.append(neighbor)
dists.append(n_dist)
dests_dists = dict(zip(dests,dists))
dists = self._probability_distribution(dists)
next_dest = np.random.choice(dests, p=dists)
# update traveled time
#TODO select edge!
self.travel_time += dests_dists[next_dest]
# off you go
self.pos = next_dest
else:
# sit and wait for summer
self.travel_time += model.season_length
def __str__(self):
templ = "Travel_Agent: {pos: %d, dest: %d, unique_id: %d, travel_time: %d}"
text = templ %(self.pos,self.dest, self.unique_id, self.travel_time)
return text
class Travel_Model(Model):
def __init__(self, networks=None, season_length=91, n_agents=100, max_steps=1000):
self.n_steps = 0
self.max_steps = max_steps
self.season_length = season_length
self.schedule = BaseScheduler(self)
if networks is None:
networks = self._demo_networks()
self.n_seasons = len(networks)
# space
nodes = networks[0].nodes()
edges = []
for network in networks:
edges.append(network.edges(data=True))
self.network = MultilayerNetworkSpace(nodes,edges)
# agents
for n in range(n_agents):
start, dest = sample(nodes,2)
start_time = randrange(self.n_seasons * self.season_length )
agent = Travel_Agent(start,dest,start_time,n)
self.schedule.add(agent)
# data collection
self.dc = DataCollector(
{
"enroute": lambda m: self.count_en_route(m)
},
{
"position": lambda a: a.pos,
"travel_time": lambda a: a.travel_time
}
)
self.dc.collect(self)
self.running = True
def step(self):
self.schedule.step()
self.dc.collect(self)
self.n_steps +=1
if self.count_en_route(self) == 0 or self.n_steps >= self.max_steps:
self.running = False
def get_season(self, time):
return (time // self.season_length) % self.n_seasons
def _demo_networks(self):
networks = []
for i in range(3):
g = nx.random_graphs.watts_strogatz_graph(100, 2, 0.05)
dists = np.random.randint(1,30, g.number_of_edges())
dists = dict(zip(g.edges(),dists))
nx.set_edge_attributes(g, 'distance', dists)
networks.append(g)
return networks
@staticmethod
def count_en_route(model):
count = len(model.schedule.agents)
for agent in model.schedule.agents:
if agent.pos == agent.dest:
count -=1
return count