-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathutils_simplagion_on_RSC.py
290 lines (228 loc) · 10.3 KB
/
utils_simplagion_on_RSC.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
from multiprocessing import Pool
import networkx as nx
from itertools import combinations
import string
import numpy as np
import random
import json
import pickle
import copy
#model constructor
class SimplagionModel():
def __init__(self, node_neighbors_dict, triangles_list, I_percentage):
#parameters
self.neighbors_dict = node_neighbors_dict
self.triangles_list = triangles_list
self.nodes = list(node_neighbors_dict.keys())
self.N = len(node_neighbors_dict.keys())
self.I = int(I_percentage * self.N/100)
#Initial setup
#I save the infected nodes of the first initialisation in case I want to repeat several runs with
#the same configuration
self.initial_infected_nodes = self.initial_setup()
def initial_setup(self, fixed_nodes_to_infect=None, print_status=True):
#going to use this to store the agents in each state
self.sAgentSet = set()
self.iAgentSet = set()
#and here we're going to store the counts of how many agents are in each
#state @ each time step
self.iList = []
self.t = 0
#start with everyone susceptible
for n in self.nodes:
self.sAgentSet.add(n)
#infect nodes
if fixed_nodes_to_infect==None: #the first time I create the model (the instance __init__)
infected_this_setup=[]
for ite in range(self.I): #we will infect I agents
#select one to infect among the supsceptibles
to_infect = random.choice(list(self.sAgentSet))
self.infectAgent(to_infect)
infected_this_setup.append(to_infect)
else: #I already have run the model and this is not the first run, I want to infect the same nodes
infected_this_setup=[]
for to_infect in fixed_nodes_to_infect:
self.infectAgent(to_infect)
infected_this_setup.append(to_infect)
#if print_status: print 'Setup:', self.N, 'nodes', self.I, 'infected'
return infected_this_setup
def infectAgent(self,agent):
self.iAgentSet.add(agent)
self.sAgentSet.remove(agent)
return 1
def recoverAgent(self,agent):
self.sAgentSet.add(agent)
self.iAgentSet.remove(agent)
return -1
def run(self, t_max, beta1, beta2, mu, print_status):
self.t_max = t_max
while len(self.iAgentSet) > 0 and len(self.sAgentSet) != 0 and self.t<=self.t_max:
newIlist = set()
#STANDARD CONTAGION
#we only need to loop over the agents who are currently infectious
for iAgent in self.iAgentSet:
#expose their network neighbors
for agent in self.neighbors_dict[iAgent]:
#given that the neighbor is susceptible
if agent in self.sAgentSet:
#infect it with probability beta1
if (random.random() <= beta1):
newIlist.add(agent)
#TRIANGLE CONTAGION
for triangle in self.triangles_list:
n1, n2, n3 = triangle
if n1 in self.iAgentSet:
if n2 in self.iAgentSet:
if n3 in self.sAgentSet:
#infect n3 with probability beta2
if (random.random() <= beta2):
newIlist.add(n3)
else:
if n3 in self.iAgentSet:
#infect n2 with probability beta2
if (random.random() <= beta2):
newIlist.add(n2)
else:
if (n2 in self.iAgentSet) and (n3 in self.iAgentSet):
#infect n1 with probability beta2
if (random.random() <= beta2):
newIlist.add(n1)
#Update only now the nodes that have been infected
for n_to_infect in newIlist:
self.infectAgent(n_to_infect)
#for recoveries
newRlist = set()
#In case all the individuals are infected I have to stop the recovery process. So I do the
#recovery only if there is at least one individual not infected
if len(self.iAgentSet)<self.N:
for recoverAgent in self.iAgentSet:
#if the agent has just been infected it will not recover this time
if recoverAgent in newIlist:
continue
else:
if (random.random() <= mu):
newRlist.add(recoverAgent)
#Update only now the nodes that have been infected
for n_to_recover in newRlist:
self.recoverAgent(n_to_recover)
#then track the number of individuals in each state
self.iList.append(len(self.iAgentSet))
#increment the time
self.t += 1
#and when we're done, return all of the relevant information
if print_status: print('beta1', beta1, 'Done!', len(self.iAgentSet), 'infected agents left')
return self.iList
def get_stationary_rho(self, normed=True, last_k_values = 100):
i = self.iList
if len(i)==0:
return 0
if normed:
i = 1.*np.array(i)/self.N
if i[-1]==1:
return 1
elif i[-1]==0:
return 0
else:
avg_i = np.mean(i[-last_k_values:])
avg_i = np.nan_to_num(avg_i) #if there are no infected left nan->0
return avg_i
def run_one_simulation(args):
it_num, N, p1, p2, lambda1s, lambdaD_target, I_percentage, t_max, mu = args
print('It %i initialized'%it_num)
node_neighbors_dict, triangles_list = generate_my_simplicial_complex_d2(N,p1,p2)
real_k = 1.*sum([len(v) for v in node_neighbors_dict.values()])/len(node_neighbors_dict)
real_kD = 3.*len(triangles_list)/len(node_neighbors_dict)
print('It %i, created SC with k1=%.1f and k2=%.1f'%(it_num,real_k,real_kD))
beta1s = 1.*(mu/real_k)*lambda1s
beta2 = 1.*(mu/real_kD)*lambdaD_target
rhos = [] #here I'll store the rho(t)
for beta1 in beta1s:
mySimplagionModel = SimplagionModel(node_neighbors_dict, triangles_list, I_percentage)
mySimplagionModel.initial_setup(fixed_nodes_to_infect = mySimplagionModel.initial_infected_nodes);
results = mySimplagionModel.run(t_max, beta1, beta2, mu, print_status=False)
rho = mySimplagionModel.get_stationary_rho(normed=True, last_k_values = 100)
rhos.append(rho)
print('It %i, simulation has finished'%(it_num))
return rhos, real_k, real_kD
def generate_my_simplicial_complex_d2(N,p1,p2):
"""Our model"""
#I first generate a standard ER graph with edges connected with probability p1
G = nx.fast_gnp_random_graph(N, p1, seed=None)
if not nx.is_connected(G):
giant = list(nx.connected_components(G))[0]
G = nx.subgraph(G, giant)
print('not connected, but GC has order %i ans size %i'%(len(giant), G.size()))
triangles_list = []
G_copy = G.copy()
#Now I run over all the possible combinations of three elements:
for tri in combinations(list(G.nodes()),3):
#And I create the triangle with probability p2
if random.random() <= p2:
#I close the triangle.
triangles_list.append(tri)
#Now I also need to add the new links to the graph created by the triangle
G_copy.add_edge(tri[0], tri[1])
G_copy.add_edge(tri[1], tri[2])
G_copy.add_edge(tri[0], tri[2])
G = G_copy
#Creating a dictionary of neighbors
node_neighbors_dict = {}
for n in list(G.nodes()):
node_neighbors_dict[n] = G[n].keys()
#print len(triangles_list), 'triangles created. Size now is', G.size()
#avg_n_triangles = 3.*len(triangles_list)/G.order()
#return node_neighbors_dict, node_triangles_dict, avg_n_triangles
#return node_neighbors_dict, triangles_list, avg_n_triangles
return node_neighbors_dict, triangles_list
def get_p1_and_p2(k1,k2,N):
p2 = (2.*k2)/((N-1.)*(N-2.))
p1 = (k1 - 2.*k2)/((N-1.)- 2.*k2)
if (p1>=0) and (p2>=0):
return p1, p2
else:
raise ValueError('Negative probability!')
def find_cut(rhos_array):
#First index with non-zero value >1
cut = min(np.argwhere(np.count_nonzero(rhos_array, axis=0)>1))[0]
return cut
def parse_results(results, cut):
rhos_array, real_k_list, real_kD_list = [], [], []
for rhos, real_k, real_kD in results:
real_k_list.append(real_k)
real_kD_list.append(real_kD)
rhos_array.append(rhos)
rhos_array = np.array(rhos_array)
real_kD_list = np.array(real_kD_list)
real_k_list = np.array(real_k_list)
avg_kD = real_kD_list.mean(axis=0)
avg_k = real_k_list.mean(axis=0)
if cut==False:
avg_rhos = np.mean(rhos_array, axis=0)
avg_kD = real_kD_list.mean(axis=0)
avg_k = real_k_list.mean(axis=0)
#std_rhos = np.std(rhos_array, axis=0)
return avg_rhos, avg_k, avg_kD
else:
cut_point = find_cut(rhos_array)
cut_rhos_array = []
for rhos, _, _ in results:
clean_rhos = []
for i, rr in enumerate(rhos):
if i<cut_point:
clean_rhos.append(rr)
elif rr==0:
clean_rhos.append(np.nan)
else:
clean_rhos.append(rr)
cut_rhos_array.append(clean_rhos)
cut_rhos_array = np.array(cut_rhos_array)
avg_rhos = np.nanmean(cut_rhos_array, axis=0)
#std_rhos = np.nanstd(rhos_array, axis=0)
return avg_rhos, avg_k, avg_kD
#Function for MF
def get_rho_MF(l, lD):
rho1 = (lD-l + np.sqrt((l-lD)**2 - 4.*lD*(1-l)))/(2*lD)
if rho1>0:
return rho1
else:
return 0