-
Notifications
You must be signed in to change notification settings - Fork 30
/
Copy pathcub_demo.py
239 lines (218 loc) · 9.64 KB
/
cub_demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
''' A3M for fine-grained recognition
'''
from __future__ import print_function
import sys
sys.path.append("..")
sys.setrecursionlimit(10000)
import numpy as np
np.random.seed(2208) # for reproducibility
import time
from keras.preprocessing.image import ImageDataGenerator
from keras.layers import Input, Dense, RepeatVector, Permute, merge
from keras.layers import BatchNormalization, Lambda, Bidirectional, GRU
from keras.layers import Dense, Dropout, Activation, Flatten, Reshape
from keras.layers import Convolution2D, MaxPooling2D, Convolution1D
from keras.layers import GlobalAveragePooling2D, GlobalAveragePooling1D
from keras.models import Model
from keras.optimizers import SGD
from keras.utils import np_utils
from keras import backend as K
from keras.models import load_model
#from keras.utils.visualize_util import plot
from keras.applications.vgg16 import VGG16
from keras.applications.resnet50 import ResNet50
import scipy.misc
from sklearn import preprocessing
import CUB
# args
net = sys.argv[1]
data_folder = sys.argv[2]
# model config
flag_test = False
batch_size = 10
nb_epoch = 10
dropout = 0.5
final_dim = 512 if net=='VGG16' else 2048
emb_dim = 512
shared_layer_name = 'block5_pool' if net=='VGG16' else 'activation_49'
model_weight_path = './model/weights_resnet50_86.1.h5'
lambdas = [0.2,0.5,1.0]
attr_equal = False
region_equal = False
# dataset config
dataset = 'CUB'
nb_classes = 200
nb_attributes = [10, 16, 16, 16, 5, 16, 7, 16, 12, 16, 16, 15, 4, 16, 16, 16, 16, 6, 6, 15, 5, 5, 5, 16, 16, 16, 16, 5]
img_rows, img_cols = 448, 448
L = 14*14
lr_list = [0.001,0.003,0.001,0.001,0.001,0.001,0.001,0.0001]
def init_classification(input_fea_map, dim_channel, nb_class, name=None):
# conv
fea_map = Convolution1D(dim_channel, 1, border_mode='same')(share_fea_map)
fea_map = BatchNormalization(axis=2)(fea_map)
fea_map = Activation('relu')(fea_map)
# pool
pool = GlobalAveragePooling1D(name=name+'_avg_pool')(fea_map)
pool = BatchNormalization()(pool)
pool = Activation('relu')(pool)
# classification
pool = Dropout(dropout)(pool)
prob = Dense(nb_class)(pool)
prob = Activation(activation='softmax',name=name)(prob)
return prob,pool,fea_map
# model define
alphas = [lambdas[1]*1.0/len(nb_attributes)]*len(nb_attributes)
loss_dict = {}
weight_dict = {}
# input and output
inputs = Input(shape=(3, img_rows, img_cols))
out_list = []
# shared CNN
model_raw = eval(net)(input_tensor=inputs, include_top=False, weights='imagenet')
share_fea_map = model_raw.get_layer(shared_layer_name).output
share_fea_map = Reshape((final_dim, L), name='reshape_layer')(share_fea_map)
share_fea_map = Permute((2, 1))(share_fea_map)
# loss-1: identity classification
id_prob,id_pool,id_fea_map = init_classification(share_fea_map, emb_dim, nb_classes, name='p0')
out_list.append(id_prob)
loss_dict['p0'] = 'categorical_crossentropy'
weight_dict['p0'] = lambdas[0]
# loss-2: attribute classification
attr_fea_list = []
for i in range(len(nb_attributes)):
name ='attr'+str(i)
attr_prob,attr_pool,_ = init_classification(share_fea_map, emb_dim, nb_attributes[i], name)
out_list.append(attr_prob)
attr_fea_list.append(attr_pool)
loss_dict[name] = 'categorical_crossentropy'
weight_dict[name] = alphas[i]
# attention generation
region_score_map_list = []
attr_score_list = []
for i in range(len(nb_attributes)):
attn1 = merge([id_fea_map,attr_fea_list[i]], mode='dot', dot_axes=(2,1))
fea_score = merge([id_pool,attr_fea_list[i]], mode='dot', dot_axes=(1,1))
region_score_map_list.append(attn1)
attr_score_list.append(fea_score)
# regional feature fusion
region_score_map = merge(region_score_map_list, mode='ave', name='attn')
region_score_map = BatchNormalization()(region_score_map)
region_score_map = Activation('sigmoid', name='region_attention')(region_score_map)
region_fea = merge([id_fea_map,region_score_map], mode='dot', dot_axes=(1,1))
region_fea = Lambda(lambda x: x*(1.0/L))(region_fea)
region_fea = BatchNormalization()(region_fea)
# attribute feature fusion
attr_scores = merge(attr_score_list, mode='concat')
attr_scores = BatchNormalization()(attr_scores)
attr_scores = Activation('sigmoid')(attr_scores)
attr_fea = merge(attr_fea_list, mode='concat')
attr_fea = Reshape((emb_dim, len(nb_attributes)))(attr_fea)
equal_attr_fea = GlobalAveragePooling1D()(attr_fea)
attr_fea = merge([attr_fea,attr_scores], mode='dot', dot_axes=(2,1))
attr_fea = Lambda(lambda x: x*(1.0/len(nb_attributes)))(attr_fea)
attr_fea = BatchNormalization()(attr_fea)
# loss-3: final classification
if(attr_equal):
attr_fea = equal_attr_fea
if(region_equal):
region_fea = id_pool
final_fea = merge([attr_fea,region_fea], mode='concat')
final_fea = Activation('relu', name='final_fea')(final_fea)
final_fea = Dropout(dropout)(final_fea)
final_prob = Dense(nb_classes)(final_fea)
final_prob = Activation(activation='softmax',name='p')(final_prob)
out_list.append(final_prob)
loss_dict['p'] = 'categorical_crossentropy'
weight_dict['p'] = lambdas[2]
model = Model(inputs, out_list)
if(flag_test):
model.load_weights(model_weight_path)
model.summary()
#plot(model, show_shapes=True, to_file='./fig/'+net+'_attention.png')
# the data, shuffled and split between train and test sets
(X_train, y_train),(X_test, y_test),(A_train,A_test,C_A)=eval(dataset).load_data(
data_folder, target_size=(img_rows, img_cols), bounding_box=True)
print(X_train[100][1][50:60,100:110])
print('X_train shape:', X_train.shape)
print('X_test shape:', X_test.shape)
# concat Y A
yA_train = np.concatenate((np.expand_dims(y_train,1), A_train), axis=1)
yA_test = np.concatenate((np.expand_dims(y_test,1), A_test), axis=1)
print('yA_train shape:', yA_train.shape)
print('yA_test shape:', yA_test.shape)
# train/test
for lr in lr_list:
# test
if(flag_test):
label_test_list = []
label_test_list.append(np_utils.to_categorical(y_test, nb_classes))
for i in range(len(nb_attributes)):
label_test_list.append(np_utils.to_categorical(A_test[:,i], nb_attributes[i]))
label_test_list.append(np_utils.to_categorical(y_test, nb_classes))
scores = model.evaluate(X_test, label_test_list, verbose=0)
print('\nval-loss: ',scores[:1+len(loss_dict)], '\nval-acc: ', scores[1+len(loss_dict):])
break
# train
if(not flag_test):
if(lr==0.011):
for layer in model.layers:
if(layer.name=='reshape_layer'):
break
layer.trainable=False
else:
for layer in model.layers:
layer.trainable=True
opt = SGD(lr=lr, decay=5e-4, momentum=0.9, nesterov=True)
model.compile(loss=loss_dict,
loss_weights=weight_dict,
optimizer=opt, metrics=['accuracy'])
# data augment this will do preprocessing and realtime data augmentation
datagen = ImageDataGenerator(
featurewise_center=False, # set input mean to 0 over the dataset
samplewise_center=False, # set each sample mean to 0
featurewise_std_normalization=False, # divide inputs by std of the dataset
samplewise_std_normalization=False, # divide each input by its std
zca_whitening=False, # apply ZCA whitening
rotation_range=30, # randomly rotate images in the range (degrees, 0 to 180)
width_shift_range=0.1, # randomly shift images horizontally (fraction of total width)
height_shift_range=0.1, # randomly shift images vertically (fraction of total height)
zoom_range=[0.75,1.33],
horizontal_flip=True, # randomly flip images
vertical_flip=False) # randomly flip images
# train for nb_epoch epoches
for e in range(nb_epoch):
time1 = time.time()
print('Epoch %d/%d' % (e+1,nb_epoch))
batches = 1
ave_loss = np.zeros(1+2*len(loss_dict))
for X_batch, yA_batch in datagen.flow(X_train, yA_train, batch_size=batch_size):
y_batch = yA_batch[:,:1]
attr_batch = yA_batch[:,1:]
label_batch_list = []
label_batch_list.append(np_utils.to_categorical(y_batch, nb_classes))
for i in range(len(nb_attributes)):
label_batch_list.append(np_utils.to_categorical(attr_batch[:,i], nb_attributes[i]))
label_batch_list.append(np_utils.to_categorical(y_batch, nb_classes))
loss = model.train_on_batch(X_batch, label_batch_list)
# print
ave_loss = ave_loss*(batches-1)/batches + np.array(loss)/batches
show_idx = [0,len(loss_dict)+1,len(loss_dict)+2,2*len(loss_dict)]
sys.stdout.write('\rtrain-loss: %.4f, train-acc: %.4f %.4f %.4f'
% tuple(ave_loss[show_idx].tolist()))
sys.stdout.flush()
batches += 1
if batches > len(X_train)/batch_size:
sys.stdout.write("\r \r\n")
break
# test
label_test_list = []
label_test_list.append(np_utils.to_categorical(y_test, nb_classes))
for i in range(len(nb_attributes)):
label_test_list.append(np_utils.to_categorical(A_test[:,i], nb_attributes[i]))
label_test_list.append(np_utils.to_categorical(y_test, nb_classes))
scores = model.evaluate(X_test, label_test_list, verbose=0)
print('\nval-loss: ',scores[:1+len(loss_dict)], '\nval-acc: ', scores[1+len(loss_dict):])
print('Main acc: %f' %(scores[-1]))
# save model
model.save_weights('./model/weights_'+net+str(lr)+'.h5')
print('train stage:',lr,' sgd done!')