This repo is an implementation of U-Net for penguin colony detection. It is under active development.
This code is written by Hieu-Le.
Note: The current software works well with PyTorch 0.4.
- Linux
- Python 3
- CPU or NVIDIA GPU + CUDA CuDNN
- Install PyTorch 0.4 and dependencies from http://pytorch.org
- Install Torch vision from the source.
git clone https://github.com/pytorch/vision
cd vision
python setup.py install
pip install visdom
pip install dominate
- Alternatively, all dependencies can be installed by
pip install -r requirements.txt
- Clone this repo:
git clone https://github.com/iceberg-project/Penguins/
- Download a pre-trained model at:
https://drive.google.com/file/d/149j5rlynkO1jQTLOMpL5lextHY0ozw6N/view?usp=sharing
Please put the model file to: <checkpoints_dir>/<model_name>/
The one provided here is at the epoch 300 of the model named "v3weakly_unetr_bs96_main_model_ignore_bad"
- The script to run the testing for a single PNG image:
python predict.py [--params ...]
- --name: name of the model used for testing
- --gpu_ids: the gpu used for testing
- --checkpoints_dir: path to the folder containing the trained models
- --epoch: which epoch we use to test the model
- --input_im: path to the input image
- --output: directory to save the outputs
Example script:
python predict.py --gpu-ids 0 --name v3weakly_unetr_bs96_main_model_ignore_bad --epoch 300 --checkpoints_dir '../checkpoints_CVPR19W/' --output test --testset GE --input_im ../data/Penguins/Test/A/GE01_20120308222215_1050410000422100_12MAR08222215-M1BS-054072905140_01_P002_u08rf3031.png