You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
{{ message }}
This repository has been archived by the owner on Jan 7, 2025. It is now read-only.
3 frames /usr/local/lib/python3.10/dist-packages/tensorflow/python/eager/polymorphic_function/polymorphic_function.py in _call(self, *args, **kwds)
924 # In this case we have created variables on the first call, so we run the
925 # defunned version which is guaranteed to never create variables.
--> 926 return self._no_variable_creation_fn(*args, **kwds) # pylint: disable=not-callable
927 elif self._variable_creation_fn is not None:
928 # Release the lock early so that multiple threads can perform the call
TypeError: 'NoneType' object is not callable
The text was updated successfully, but these errors were encountered:
When i run the training file, i got the error below in the last cell of the code file:
Training details:
INFO:ISR.utils.train_helper:
Training details:
training_parameters:
INFO:ISR.utils.train_helper: training_parameters:
lr_train_dir: div2k/DIV2K_train_LR_bicubic/X2/
INFO:ISR.utils.train_helper: lr_train_dir: div2k/DIV2K_train_LR_bicubic/X2/
hr_train_dir: div2k/DIV2K_train_HR/
INFO:ISR.utils.train_helper: hr_train_dir: div2k/DIV2K_train_HR/
lr_valid_dir: div2k/DIV2K_train_LR_bicubic/X2/
INFO:ISR.utils.train_helper: lr_valid_dir: div2k/DIV2K_train_LR_bicubic/X2/
hr_valid_dir: div2k/DIV2K_train_HR/
INFO:ISR.utils.train_helper: hr_valid_dir: div2k/DIV2K_train_HR/
loss_weights: {'generator': 0.0, 'feature_extractor': 0.0833, 'discriminator': 0.01}
INFO:ISR.utils.train_helper: loss_weights: {'generator': 0.0, 'feature_extractor': 0.0833, 'discriminator': 0.01}
log_dirs: {'logs': './logs', 'weights': './weights'}
INFO:ISR.utils.train_helper: log_dirs: {'logs': './logs', 'weights': './weights'}
fallback_save_every_n_epochs: 2
INFO:ISR.utils.train_helper: fallback_save_every_n_epochs: 2
dataname: div2k
INFO:ISR.utils.train_helper: dataname: div2k
n_validation: 40
INFO:ISR.utils.train_helper: n_validation: 40
flatness: {'min': 0.0, 'max': 0.15, 'increase': 0.01, 'increase_frequency': 5}
INFO:ISR.utils.train_helper: flatness: {'min': 0.0, 'max': 0.15, 'increase': 0.01, 'increase_frequency': 5}
learning_rate: {'initial_value': 0.0004, 'decay_factor': 0.5, 'decay_frequency': 30}
INFO:ISR.utils.train_helper: learning_rate: {'initial_value': 0.0004, 'decay_factor': 0.5, 'decay_frequency': 30}
adam_optimizer: {'beta1': 0.9, 'beta2': 0.999, 'epsilon': None}
INFO:ISR.utils.train_helper: adam_optimizer: {'beta1': 0.9, 'beta2': 0.999, 'epsilon': None}
losses: {'generator': 'mae', 'discriminator': 'binary_crossentropy', 'feature_extractor': 'mse'}
INFO:ISR.utils.train_helper: losses: {'generator': 'mae', 'discriminator': 'binary_crossentropy', 'feature_extractor': 'mse'}
metrics: {'generator': <function PSNR_Y at 0x7f43af969c60>}
INFO:ISR.utils.train_helper: metrics: {'generator': <function PSNR_Y at 0x7f43af969c60>}
lr_patch_size: 40
INFO:ISR.utils.train_helper: lr_patch_size: 40
steps_per_epoch: 20
INFO:ISR.utils.train_helper: steps_per_epoch: 20
batch_size: 4
INFO:ISR.utils.train_helper: batch_size: 4
starting_epoch: 0
INFO:ISR.utils.train_helper: starting_epoch: 0
generator:
INFO:ISR.utils.train_helper: generator:
name: rrdn
INFO:ISR.utils.train_helper: name: rrdn
parameters: {'C': 4, 'D': 3, 'G': 64, 'G0': 64, 'T': 10, 'x': 2}
INFO:ISR.utils.train_helper: parameters: {'C': 4, 'D': 3, 'G': 64, 'G0': 64, 'T': 10, 'x': 2}
weights_generator: None
INFO:ISR.utils.train_helper: weights_generator: None
discriminator:
INFO:ISR.utils.train_helper: discriminator:
name: srgan-large
INFO:ISR.utils.train_helper: name: srgan-large
weights_discriminator: None
INFO:ISR.utils.train_helper: weights_discriminator: None
feature_extractor:
INFO:ISR.utils.train_helper: feature_extractor:
name: vgg19
INFO:ISR.utils.train_helper: name: vgg19
layers: [5, 9]
INFO:ISR.utils.train_helper: layers: [5, 9]
WARNING:tensorflow:Model failed to serialize as JSON. Ignoring... maximum recursion depth exceeded
5/5 [==============================] - 7s 1s/step
Epoch 0/1
INFO:ISR.train.trainer:Epoch 0/1
Current learning rate: 0.00039999998989515007
INFO:ISR.train.trainer:Current learning rate: 0.00039999998989515007
0%| | 0/20 [00:00<?, ?it/s]1/1 [==============================] - 4s 4s/step
1/1 [==============================] - 0s 186ms/step
0%| | 0/20 [00:07<?, ?it/s]
TypeError Traceback (most recent call last)
in <cell line: 1>()
----> 1 trainer.train(
2 epochs=1,
3 steps_per_epoch=20,
4 batch_size=4,
5 monitored_metrics={'val_generator_PSNR_Y': 'max'}
3 frames
/usr/local/lib/python3.10/dist-packages/tensorflow/python/eager/polymorphic_function/polymorphic_function.py in _call(self, *args, **kwds)
924 # In this case we have created variables on the first call, so we run the
925 # defunned version which is guaranteed to never create variables.
--> 926 return self._no_variable_creation_fn(*args, **kwds) # pylint: disable=not-callable
927 elif self._variable_creation_fn is not None:
928 # Release the lock early so that multiple threads can perform the call
TypeError: 'NoneType' object is not callable
The text was updated successfully, but these errors were encountered: