Skip to content
This repository has been archived by the owner on Jan 7, 2025. It is now read-only.

Optimizer problem #244

Open
itsthedarkmark opened this issue Jul 5, 2023 · 1 comment
Open

Optimizer problem #244

itsthedarkmark opened this issue Jul 5, 2023 · 1 comment

Comments

@itsthedarkmark
Copy link

When i run the training file, i got the error below in the last cell of the code file:

Training details:
INFO:ISR.utils.train_helper:
Training details:
training_parameters:
INFO:ISR.utils.train_helper: training_parameters:
lr_train_dir: div2k/DIV2K_train_LR_bicubic/X2/
INFO:ISR.utils.train_helper: lr_train_dir: div2k/DIV2K_train_LR_bicubic/X2/
hr_train_dir: div2k/DIV2K_train_HR/
INFO:ISR.utils.train_helper: hr_train_dir: div2k/DIV2K_train_HR/
lr_valid_dir: div2k/DIV2K_train_LR_bicubic/X2/
INFO:ISR.utils.train_helper: lr_valid_dir: div2k/DIV2K_train_LR_bicubic/X2/
hr_valid_dir: div2k/DIV2K_train_HR/
INFO:ISR.utils.train_helper: hr_valid_dir: div2k/DIV2K_train_HR/
loss_weights: {'generator': 0.0, 'feature_extractor': 0.0833, 'discriminator': 0.01}
INFO:ISR.utils.train_helper: loss_weights: {'generator': 0.0, 'feature_extractor': 0.0833, 'discriminator': 0.01}
log_dirs: {'logs': './logs', 'weights': './weights'}
INFO:ISR.utils.train_helper: log_dirs: {'logs': './logs', 'weights': './weights'}
fallback_save_every_n_epochs: 2
INFO:ISR.utils.train_helper: fallback_save_every_n_epochs: 2
dataname: div2k
INFO:ISR.utils.train_helper: dataname: div2k
n_validation: 40
INFO:ISR.utils.train_helper: n_validation: 40
flatness: {'min': 0.0, 'max': 0.15, 'increase': 0.01, 'increase_frequency': 5}
INFO:ISR.utils.train_helper: flatness: {'min': 0.0, 'max': 0.15, 'increase': 0.01, 'increase_frequency': 5}
learning_rate: {'initial_value': 0.0004, 'decay_factor': 0.5, 'decay_frequency': 30}
INFO:ISR.utils.train_helper: learning_rate: {'initial_value': 0.0004, 'decay_factor': 0.5, 'decay_frequency': 30}
adam_optimizer: {'beta1': 0.9, 'beta2': 0.999, 'epsilon': None}
INFO:ISR.utils.train_helper: adam_optimizer: {'beta1': 0.9, 'beta2': 0.999, 'epsilon': None}
losses: {'generator': 'mae', 'discriminator': 'binary_crossentropy', 'feature_extractor': 'mse'}
INFO:ISR.utils.train_helper: losses: {'generator': 'mae', 'discriminator': 'binary_crossentropy', 'feature_extractor': 'mse'}
metrics: {'generator': <function PSNR_Y at 0x7f43af969c60>}
INFO:ISR.utils.train_helper: metrics: {'generator': <function PSNR_Y at 0x7f43af969c60>}
lr_patch_size: 40
INFO:ISR.utils.train_helper: lr_patch_size: 40
steps_per_epoch: 20
INFO:ISR.utils.train_helper: steps_per_epoch: 20
batch_size: 4
INFO:ISR.utils.train_helper: batch_size: 4
starting_epoch: 0
INFO:ISR.utils.train_helper: starting_epoch: 0
generator:
INFO:ISR.utils.train_helper: generator:
name: rrdn
INFO:ISR.utils.train_helper: name: rrdn
parameters: {'C': 4, 'D': 3, 'G': 64, 'G0': 64, 'T': 10, 'x': 2}
INFO:ISR.utils.train_helper: parameters: {'C': 4, 'D': 3, 'G': 64, 'G0': 64, 'T': 10, 'x': 2}
weights_generator: None
INFO:ISR.utils.train_helper: weights_generator: None
discriminator:
INFO:ISR.utils.train_helper: discriminator:
name: srgan-large
INFO:ISR.utils.train_helper: name: srgan-large
weights_discriminator: None
INFO:ISR.utils.train_helper: weights_discriminator: None
feature_extractor:
INFO:ISR.utils.train_helper: feature_extractor:
name: vgg19
INFO:ISR.utils.train_helper: name: vgg19
layers: [5, 9]
INFO:ISR.utils.train_helper: layers: [5, 9]
WARNING:tensorflow:Model failed to serialize as JSON. Ignoring... maximum recursion depth exceeded
5/5 [==============================] - 7s 1s/step
Epoch 0/1
INFO:ISR.train.trainer:Epoch 0/1
Current learning rate: 0.00039999998989515007
INFO:ISR.train.trainer:Current learning rate: 0.00039999998989515007
0%| | 0/20 [00:00<?, ?it/s]1/1 [==============================] - 4s 4s/step
1/1 [==============================] - 0s 186ms/step
0%| | 0/20 [00:07<?, ?it/s]

TypeError Traceback (most recent call last)
in <cell line: 1>()
----> 1 trainer.train(
2 epochs=1,
3 steps_per_epoch=20,
4 batch_size=4,
5 monitored_metrics={'val_generator_PSNR_Y': 'max'}

3 frames
/usr/local/lib/python3.10/dist-packages/tensorflow/python/eager/polymorphic_function/polymorphic_function.py in _call(self, *args, **kwds)
924 # In this case we have created variables on the first call, so we run the
925 # defunned version which is guaranteed to never create variables.
--> 926 return self._no_variable_creation_fn(*args, **kwds) # pylint: disable=not-callable
927 elif self._variable_creation_fn is not None:
928 # Release the lock early so that multiple threads can perform the call

TypeError: 'NoneType' object is not callable

@Kotoric1
Copy link

Kotoric1 commented Mar 9, 2024

Did you fix this problem?

Sign up for free to subscribe to this conversation on GitHub. Already have an account? Sign in.
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants