-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_onset.py
443 lines (335 loc) · 16.4 KB
/
train_onset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
import argparse
import json
import torch
import torch.nn.functional as F
import pytorch_lightning as pl
from pytorch_lightning.loggers import WandbLogger
from pytorch_lightning.callbacks import ModelCheckpoint, EarlyStopping, LearningRateMonitor
import wandb
from torchmetrics.classification import BinaryAUROC, BinaryAccuracy, BinaryF1Score, BinaryPrecision, BinaryRecall
import torchmetrics.functional as M
import optuna
from optuna.integration import PyTorchLightningPruningCallback
import matplotlib.pyplot as plt
import webdataset as wds
from dataset import get_dataset, get_dataloader
from config import config
from models.onset import LSTM_A, CNN_A, Classifier
# catch warnings
import warnings
warnings.filterwarnings("ignore")
# for CNNs
torch.backends.cudnn.benchmark = True
class OnsetLightningModule(pl.LightningModule):
def __init__(self, learning_rate=1e-3, weight_decay=0, momentum=0, dropout=0.5, optimizer="Adam", hidden_size=200, num_layers=2, bidirectional=True):
super().__init__()
self.save_hyperparameters()
# parameters
self.learning_rate = learning_rate
self.weight_decay = weight_decay
self.momentum = momentum
self.dropout = dropout
self.optimizer_name = optimizer
self.hidden_size = hidden_size
self.num_layers = num_layers
self.bidirectional = bidirectional
# for graphing forward pass
self.example_input_array = torch.Tensor(1, config.onset.context_radius * 2 + 1, config.audio.n_bins, len(config.audio.n_ffts))
# layers
self.cnn = CNN_A(in_channels=len(config.audio.n_ffts))
self.lstm = LSTM_A(input_size=165, hidden_size=hidden_size, num_layers=num_layers, dropout=dropout, bidirectional=bidirectional)
self.classifier = Classifier(input_size=200, output_size=1, return_logits=False)
self.binary_accuracy = BinaryAccuracy()
self.binary_precision = BinaryPrecision()
self.binary_recall = BinaryRecall()
self.binary_auroc = BinaryAUROC()
self.binary_f1_score = BinaryF1Score()
def init_hidden(self, batch_size, device):
# layer initalisation for binary class imbalance
num_directions = 2 if self.bidirectional else 1
h0 = torch.zeros(num_directions * self.num_layers, batch_size, self.hidden_size, device=device)
c0 = torch.zeros(num_directions * self.num_layers, batch_size, self.hidden_size, device=device)
return (h0, c0)
def forward(self, x, difficulty=None):
# permute to (B, C, T, F)
x = x.permute(0, 3, 1, 2)
# CNN
x = self.cnn(x)
# permute to (B, T, F, C), then flatten to (B, T, F*C)
x = x.permute(0, 2, 3, 1)
x = x.reshape(x.size(0), x.size(1), -1)
# add onehot difficulty as a feature to each frame
if difficulty is not None:
difficulty = difficulty.unsqueeze(1).repeat(1, x.size(1), 1)
x = torch.cat([x, difficulty], dim=2)
else:
x = torch.cat([x, torch.zeros(x.size(0), x.size(1), 5, device=x.device)], dim=2)
# lstm
x = self.lstm(x)
# get last frame for FC layers
x = x[:, -1, :]
# FC layers
x = self.classifier(x).squeeze(1)
return x
def training_step(self, batch, batch_idx):
features, difficulty, y = batch
y_hat = self.forward(features, difficulty)
loss = F.binary_cross_entropy(y_hat, y)
# logging
self.log("train/loss", loss)
self.log("train/accuracy", self.binary_accuracy(y_hat, y))
self.log("train/precision", self.binary_precision(y_hat, y))
self.log("train/recall", self.binary_recall(y_hat, y))
self.log("train/f1", self.binary_f1_score(y_hat, y))
return loss
def validation_step(self, batch, batch_idx):
features, difficulty, y = batch
y_hat = self.forward(features, difficulty)
loss = F.binary_cross_entropy(y_hat, y)
# logging
self.log("valid/loss", loss)
self.log("valid/accuracy", self.binary_accuracy(y_hat, y))
self.log("valid/precision", self.binary_precision(y_hat, y))
self.log("valid/recall", self.binary_recall(y_hat, y))
self.log("valid/f1", self.binary_f1_score(y_hat, y))
return {"loss": loss, "y_hat": y_hat, "y": y}
def validation_epoch_end(self, outputs):
loss = torch.stack([x["loss"] for x in outputs]).mean()
y_hat = torch.cat([x["y_hat"] for x in outputs])
y = torch.cat([x["y"] for x in outputs])
# logging
self.log("valid/epoch_loss", loss)
self.log("valid/epoch_accuracy", self.binary_accuracy(y_hat, y))
self.log("valid/epoch_f1", self.binary_f1_score(y_hat, y))
def configure_optimizers(self):
kwargs = {"lr": self.learning_rate, "weight_decay": self.weight_decay}
# add momentum if optimizer is SGD, RMSprop or
if self.optimizer_name in ["SGD", "RMSprop"]:
kwargs["momentum"] = self.momentum
optimizer = getattr(torch.optim, self.optimizer_name)(self.parameters(), **kwargs)
return optimizer
def train(args, train_loader, valid_loader):
# init wandb
wandb.init(project="onset", entity="ifag")
# log important hyperparameters that are not stored in lightning module
wandb.config.update({
"epochs": args.epochs,
"batch_size": args.batch_size,
"accumulate_grad_batches": args.accumulate_grad_batches,
"gradient_clip": args.gradient_clip,
"sample_rate": config.audio.sample_rate,
"n_ffts": config.audio.n_ffts,
"hop_length": config.audio.hop_length,
"n_bins": config.audio.n_bins,
"log_scale": config.audio.log,
"normalize": config.audio.normalize,
"context_radius": config.onset.context_radius,
})
# define model
model = OnsetLightningModule(
learning_rate=args.learning_rate,
weight_decay=args.weight_decay,
momentum=args.momentum,
dropout=args.dropout,
optimizer=args.optimizer,
hidden_size=200,
num_layers=2,
bidirectional=False,
)
# define logger
logger = WandbLogger(project="onset", entity="ifag", log_model=True)
callbacks = []
if config.callbacks.lr_monitor:
lr_monitor = LearningRateMonitor(logging_interval="step")
callbacks.append(lr_monitor)
if args.checkpoint:
checkpoint_callback = ModelCheckpoint(
monitor=config.callbacks.checkpoint.monitor,
dirpath=config.paths.checkpoints,
save_top_k=args.top_k,
mode=config.callbacks.checkpoint.mode,
)
callbacks.append(checkpoint_callback)
if args.early_stopping:
early_stopping = EarlyStopping(
monitor=config.callbacks.early_stopping.monitor,
patience=config.callbacks.early_stopping.patience,
mode=config.callbacks.early_stopping.mode
)
callbacks.append(early_stopping)
trainer = pl.Trainer(
accelerator=args.accelerator,
devices=args.devices,
max_epochs=args.epochs,
logger=logger,
callbacks=callbacks,
val_check_interval=4000,
gradient_clip_val=args.gradient_clip,
accumulate_grad_batches=args.accumulate_grad_batches,
log_every_n_steps=100
)
trainer.fit(model, train_dataloaders=train_loader, val_dataloaders=valid_loader)
# save best model
if args.checkpoint:
best_model_path = trainer.checkpoint_callback.best_model_path
print(f"Best model path: {best_model_path}")
return trainer, model
def find_lr(args, train_loader, valid_loader):
trainer = pl.Trainer(
accelerator=args.accelerator,
devices=args.devices,
strategy=config.device.strategy,
gradient_clip_val=args.gradient_clip,
accumulate_grad_batches=args.accumulate_grad_batches,
log_every_n_steps=100,
max_epochs=1,
max_steps=10000
)
model = OnsetLightningModule(
learning_rate=args.learning_rate,
weight_decay=args.weight_decay,
momentum=args.momentum,
dropout=args.dropout,
optimizer=args.optimizer,
hidden_size=200,
num_layers=2,
bidirectional=False,
)
lr_finder = trainer.tuner.lr_find(model, train_dataloaders=train_loader, val_dataloaders=valid_loader, num_training=10000, min_lr=1e-6, max_lr=1e-1)
fig = lr_finder.plot(suggest=True)
plt.show()
fig.show()
fig.savefig("lr_finder.png")
print(f"suggested learning rate: {lr_finder.suggestion()}")
return lr_finder
def objective(trial):
wandb.init(project="onset", entity="ifag")
# get trial hyperparameters
hp = {
"learning_rate": trial.suggest_loguniform("learning_rate", 1e-5, 1.0),
"weight_decay": trial.suggest_loguniform("weight_decay", 1e-5, 1.0),
"momentum": trial.suggest_uniform("momentum", 0.0, 1.0),
"dropout": trial.suggest_uniform("dropout", 0.0, 1.0),
"optimizer": trial.suggest_categorical("optimizer", ["SGD", "Adam", "AdamW"]),
# "bidirectional": trial.suggest_categorical("bidirectional", [True, False]),
"gradient_clip": trial.suggest_uniform("gradient_clip", 0.0, 10.0),
"batch_size": trial.suggest_categorical("batch_size", [128, 256, 512]),
}
# add batch size to wandb config
wandb.config.update({
"epochs": args.epochs,
"batch_size": hp["batch_size"],
"gradient_clip": hp["gradient_clip"],
"accumulate_grad_batches": args.accumulate_grad_batches,
"sample_rate": config.audio.sample_rate,
"n_ffts": config.audio.n_ffts,
"hop_length": config.audio.hop_length,
"n_bins": config.audio.n_bins,
"log_scale": config.audio.log,
"normalize": config.audio.normalize,
"context_radius": config.onset.context_radius,
})
model = OnsetLightningModule(
learning_rate=hp["learning_rate"],
weight_decay=hp["weight_decay"],
momentum=hp["momentum"],
dropout=hp["dropout"],
optimizer=hp["optimizer"],
bidirectional=False,
hidden_size=200,
num_layers=2,
)
train_loader = get_dataloader(get_dataset("train"), batch_size=hp["batch_size"], batched_dataloder=True, pin_memory=config.dataloader.pin_memory, num_workers=config.dataloader.num_workers)
valid_loader = get_dataloader(get_dataset("valid"), batch_size=hp["batch_size"], batched_dataloder=True, pin_memory=config.dataloader.pin_memory, num_workers=config.dataloader.num_workers)
logger = WandbLogger(name="tune", project="onset", entity="ifag", log_model=True)
trainer = pl.Trainer(
accelerator=config.device.accelerator,
devices=config.device.devices,
strategy=config.device.strategy,
max_epochs=args.max_epochs,
logger=logger,
callbacks=[PyTorchLightningPruningCallback(trial, monitor=config.tuning.pruning.monitor)],
val_check_interval=4000,
gradient_clip_val=hp["gradient_clip"],
accumulate_grad_batches=config.hyperparameters.accumulate_grad_batches,
log_every_n_steps=100,
)
trainer.fit(model, train_dataloaders=train_loader, val_dataloaders=valid_loader)
return trainer.callback_metrics[config.tuning.monitor]
def get_args():
parser = argparse.ArgumentParser(description="Train the onset detection model.", formatter_class=argparse.ArgumentDefaultsHelpFormatter)
# README - ArgumentsDefaultsHelpFormatter requires all arguments use a help string, even if it is empty
# train/optimise
parser.add_argument("action", type=str, choices=["train", "tune", "find_lr"], help="Whether to train or tune the model.")
# create groups
p_hp = parser.add_argument_group("hyperparameters")
p_dataloader = parser.add_argument_group("dataloader")
p_callbacks = parser.add_argument_group("callbacks")
p_device = parser.add_argument_group("device")
p_tuning = parser.add_argument_group("tuning")
empty = " - "
# hyperparameters
p_hp.add_argument("--epochs", type=int, default=config.hyperparameters.epochs, help=empty)
p_hp.add_argument("--batch-size", type=int, default=config.hyperparameters.batch_size, help=empty)
p_hp.add_argument("--learning-rate", type=float, default=config.hyperparameters.learning_rate, help=empty)
p_hp.add_argument("--weight-decay", type=float, default=config.hyperparameters.weight_decay, help=empty)
p_hp.add_argument("--momentum", type=float, default=config.hyperparameters.momentum, help=empty)
p_hp.add_argument("--dropout", type=float, default=config.hyperparameters.dropout, help=empty)
p_hp.add_argument("--optimizer", type=str, default=config.hyperparameters.optimizer, help=empty)
p_hp.add_argument("--gradient-clip", type=float, default=config.hyperparameters.gradient_clip, help=empty)
p_hp.add_argument("--accumulate-grad-batches", type=int, default=config.hyperparameters.accumulate_grad_batches, help=empty)
# dataloader
p_dataloader.add_argument("--num-workers", type=int, default=config.dataloader.num_workers, help=empty)
p_dataloader.add_argument("--pin-memory", type=bool, default=config.dataloader.pin_memory, help=empty)
# device
p_device.add_argument("--accelerator", type=str, default=config.device.accelerator, help=empty)
p_device.add_argument("--devices", type=int, default=config.device.devices, help=empty)
p_device.add_argument("--strategy", type=str, default=config.device.strategy, help=empty)
# callbacks
p_callbacks.add_argument("--checkpoint", type=bool, default=config.callbacks.checkpoint.enable, help=empty)
p_callbacks.add_argument("--early-stopping", type=bool, default=config.callbacks.early_stopping.enable, help=empty)
p_callbacks.add_argument("--top-k", type=int, default=config.callbacks.checkpoint.top_k, help=empty)
p_callbacks.add_argument("--patience", type=int, default=config.callbacks.early_stopping.patience, help=empty)
# tuning
p_tuning.add_argument("--n-trials", type=int, default=config.tuning.n_trials, help=empty)
p_tuning.add_argument("--n-jobs", type=int, default=config.tuning.n_jobs, help=empty)
p_tuning.add_argument("--timeout", type=int, default=config.tuning.timeout, help=empty)
p_tuning.add_argument("--max-epochs", type=int, default=config.tuning.max_epochs, help=empty)
p_tuning.add_argument("--direction", type=str, default=config.tuning.direction, help=empty)
p_tuning.add_argument("--prune", type=bool, default=config.tuning.pruning.enable, help="Enable early pruning of unpromising trials.")
p_tuning.add_argument("--pruning-monitor", type=str, default=config.tuning.pruning.monitor, help=empty)
p_tuning.add_argument("--monitor", type=str, default=config.tuning.monitor, help=empty)
return parser.parse_args()
def get_dataloaders(args, batched_dataloader=False):
train_dataset = get_dataset("train")
valid_dataset = get_dataset("valid")
train_loader = get_dataloader(train_dataset, batch_size=args.batch_size, batched_dataloder=False, num_workers=args.num_workers, pin_memory=args.pin_memory)
valid_loader = get_dataloader(valid_dataset, batch_size=args.batch_size, batched_dataloder=False, num_workers=args.num_workers, pin_memory=args.pin_memory)
return train_loader, valid_loader
if __name__ == "__main__":
args = get_args()
if args.action == "train":
train_loader, valid_loader = get_dataloaders(args, batched_dataloader=False)
trainer, model = train(args, train_loader, valid_loader)
elif args.action == "tune":
pruner = optuna.pruners.MedianPruner() if args.prune else None
study = optuna.create_study(
direction=args.direction,
pruner=pruner,
study_name="onset_detection"
)
study.optimize(
objective,
n_trials=args.n_trials,
n_jobs=args.n_jobs,
timeout=args.timeout
)
print("Best trial:")
trial = study.best_trial
print(" Value: {}".format(trial.value))
# save the best trial
with open("best_trial.json", "w") as f:
json.dump(trial.params, f, indent=4)
elif args.action == "find_lr":
train_loader, valid_loader = get_dataloaders(args, batched_dataloader=False)
find_lr(args, train_loader, valid_loader)