-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlast_layer_analysis.py
61 lines (56 loc) · 2.47 KB
/
last_layer_analysis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
import torch
import matplotlib
import numpy as np
import matplotlib.pyplot as plt
matplotlib.use('Agg')
def last_layer_analysis(heads, task, taskcla, y_lim=False, sort_weights=False):
"""Plot last layer weight and bias analysis"""
print('Plotting last layer analysis...')
num_classes = sum([x for (_, x) in taskcla])
weights, biases, indexes = [], [], []
class_id = 0
with torch.no_grad():
for t in range(task + 1):
n_classes_t = taskcla[t][1]
indexes.append(np.arange(class_id, class_id + n_classes_t))
if type(heads) == torch.nn.Linear: # Single head
biases.append(heads.bias[class_id: class_id + n_classes_t].detach().cpu().numpy())
weights.append((heads.weight[class_id: class_id + n_classes_t] ** 2).sum(1).sqrt().detach().cpu().numpy())
else: # Multi-head
weights.append((heads[t].weight ** 2).sum(1).sqrt().detach().cpu().numpy())
if type(heads[t]) == torch.nn.Linear:
biases.append(heads[t].bias.detach().cpu().numpy())
else:
biases.append(np.zeros(weights[-1].shape)) # For LUCIR
class_id += n_classes_t
# Figure weights
f_weights = plt.figure(dpi=300)
ax = f_weights.subplots(nrows=1, ncols=1)
for i, (x, y) in enumerate(zip(indexes, weights), 0):
if sort_weights:
ax.bar(x, sorted(y, reverse=True), label="Task {}".format(i))
else:
ax.bar(x, y, label="Task {}".format(i))
ax.set_xlabel("Classes", fontsize=11, fontfamily='serif')
ax.set_ylabel("Weights L2-norm", fontsize=11, fontfamily='serif')
if num_classes is not None:
ax.set_xlim(0, num_classes)
if y_lim:
ax.set_ylim(0, 5)
ax.legend(loc='upper left', fontsize='11') #, fontfamily='serif')
# Figure biases
f_biases = plt.figure(dpi=300)
ax = f_biases.subplots(nrows=1, ncols=1)
for i, (x, y) in enumerate(zip(indexes, biases), 0):
if sort_weights:
ax.bar(x, sorted(y, reverse=True), label="Task {}".format(i))
else:
ax.bar(x, y, label="Task {}".format(i))
ax.set_xlabel("Classes", fontsize=11, fontfamily='serif')
ax.set_ylabel("Bias values", fontsize=11, fontfamily='serif')
if num_classes is not None:
ax.set_xlim(0, num_classes)
if y_lim:
ax.set_ylim(-1.0, 1.0)
ax.legend(loc='upper left', fontsize='11') #, fontfamily='serif')
return f_weights, f_biases