-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvis_tracks_single_all.py
97 lines (77 loc) · 3.5 KB
/
vis_tracks_single_all.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
'''
visulize randomly several single tracks
'''
import glob
import pandas as pd
import matplotlib.pyplot as plt
import os
import skimage.io as io
import seaborn as sns
import random
import argparse
__author__ = "Yudong Zhang"
palette = sns.color_palette('hls', 30)
def get_color(seed):
random.seed(seed)
# random color
bbox_color = random.choice(palette)
bbox_color = [int(255 * c) for c in bbox_color][::-1]
cl='#'+hex(bbox_color[0])[-2:]+hex(bbox_color[1])[-2:]+hex(bbox_color[2])[-2:]
cl = cl.upper()
return cl
def parse_args_():
parser = argparse.ArgumentParser()
parser.add_argument('--imgfolder', type=str, default='/data/ldap_shared/synology_shared/zyd/data/20220611_detparticle/challenge/MICROTUBULE snr 7 density low')
parser.add_argument('--trackcsvpath', type=str, default='./prediction/20240301_15_25_56/track_result.csv')
parser.add_argument('--vis_save', type=str, default='./prediction/20240301_15_25_56/track_vis')
parser.add_argument('--img_fmt', type=str, default='**t{:03d}**.tif')
parser.add_argument('--vis_dot', default=False, action='store_true' )
parser.add_argument('--vistrack_number', default=50, type=int)
parser.add_argument('--vistrack_length', type=int, default=2)
opt = parser.parse_args()
return opt
if __name__ == '__main__':
opt = parse_args_()
result_pa = opt.trackcsvpath
imgfolder = opt.imgfolder
savefolder = opt.vis_save
os.makedirs(savefolder, exist_ok=True)
result = pd.read_csv(result_pa,header=0)
filename = result_pa.split('/')[-1].replace('.csv','')
print('[Info] Start')
alltracks_idx = list(set(result['trackid']))
alltracks_idx.sort()
viscount = 0
for idx_, the_id in enumerate(alltracks_idx):
print(f"[Info] Processing {idx_}/{len(alltracks_idx)}")
this_idtrack = result[result['trackid'] == the_id]
if len(this_idtrack) >= opt.vistrack_length:
viscount += 1
print(f"[Info] Finish {viscount}/{opt.vistrack_number}")
print(f"[Info] Processing {idx_}/{len(alltracks_idx)}")
if viscount >= opt.vistrack_number:
break
this_idtrack = this_idtrack.sort_values('frame')
for fr in range(int(this_idtrack['frame'].values.min()), int(this_idtrack['frame'].values.max()+1)):
imgpath = glob.glob(os.path.join(imgfolder,opt.img_fmt.format(fr)))
assert len(imgpath) == 1
img = io.imread(imgpath[0])
H,W = img.shape
plt.figure()
plt.imshow(img,'gray')
plt.axis('off')
ID_color = 'r' #get_color(the_id)
# this_iddet = result[result['trackid']==the_id].sort_values('frame')
this_iddet_near = this_idtrack[(this_idtrack['frame']<=fr)] #&(this_iddet['frame']>fr-10)
xlist = [max(min(x, W-2),1) for x in this_iddet_near['pos_x']]
ylist = [max(min(y, H-2),1) for y in this_iddet_near['pos_y']]
plt.plot(xlist,ylist,linewidth=0.5,color=ID_color)
if opt.vis_dot:
plt.scatter([xlist[-1]],[ylist[-1]],color=ID_color, marker='o', edgecolors=ID_color, s=1,linewidths=1)
plt.savefig(os.path.join(savefolder, 'track%d_%03d.jpg'%(the_id,fr)), bbox_inches='tight',dpi=300,pad_inches=0.0)
plt.close()
else:
# print(f'track{the_id} has only one length')
pass
# break
print('[Info] Success!')