From 871c49181cba20f1db8b5086b6887851770a31d9 Mon Sep 17 00:00:00 2001 From: Alexandru Fikl Date: Thu, 4 Aug 2022 16:21:49 +0300 Subject: [PATCH] implement hierachical matrix solver --- .gitignore | 2 + examples/scaling-study-hmatrix.py | 198 ++++++++ pytential/linalg/cluster.py | 19 + pytential/linalg/direct_solver_symbolic.py | 12 +- pytential/linalg/hmatrix.py | 418 ++++++++++++++++ pytential/linalg/proxy.py | 2 +- pytential/linalg/skeletonization.py | 53 ++- pytential/linalg/utils.py | 30 +- test/extra_matrix_data.py | 21 +- test/test_linalg_cluster.py | 12 +- test/test_linalg_hmatrix.py | 526 +++++++++++++++++++++ 11 files changed, 1265 insertions(+), 28 deletions(-) create mode 100644 examples/scaling-study-hmatrix.py create mode 100644 pytential/linalg/hmatrix.py create mode 100644 test/test_linalg_hmatrix.py diff --git a/.gitignore b/.gitignore index b450b3b75..59a165a7f 100644 --- a/.gitignore +++ b/.gitignore @@ -21,6 +21,8 @@ examples/*.pdf *.vtu *.vts +*.png +*.gif .cache diff --git a/examples/scaling-study-hmatrix.py b/examples/scaling-study-hmatrix.py new file mode 100644 index 000000000..80c39a187 --- /dev/null +++ b/examples/scaling-study-hmatrix.py @@ -0,0 +1,198 @@ +__copyright__ = "Copyright (C) 2022 Alexandru Fikl" + +__license__ = """ +Permission is hereby granted, free of charge, to any person obtaining a copy +of this software and associated documentation files (the "Software"), to deal +in the Software without restriction, including without limitation the rights +to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +copies of the Software, and to permit persons to whom the Software is +furnished to do so, subject to the following conditions: + +The above copyright notice and this permission notice shall be included in +all copies or substantial portions of the Software. + +THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN +THE SOFTWARE. +""" + +from dataclasses import dataclass + +import numpy as np + +from meshmode.array_context import PyOpenCLArrayContext +from pytools.convergence import EOCRecorder + +from pytential import GeometryCollection, sym + +import logging + +logging.basicConfig(level=logging.INFO) +logger = logging.getLogger(__name__) + + +@dataclass(frozen=True) +class Timings: + build: float + matvec: float + + +def run_hmatrix_matvec( + actx: PyOpenCLArrayContext, + places: GeometryCollection, *, + dofdesc: sym.DOFDescriptor) -> None: + from sumpy.kernel import LaplaceKernel + kernel = LaplaceKernel(places.ambient_dim) + sym_u = sym.var("u") + sym_op = -0.5 * sym_u + sym.D(kernel, sym_u, qbx_forced_limit="avg") + + density_discr = places.get_discretization(dofdesc.geometry, dofdesc.discr_stage) + u = actx.thaw(density_discr.nodes()[0]) + + def build_hmat(): + from pytential.linalg.hmatrix import build_hmatrix_by_proxy + return build_hmatrix_by_proxy( + actx, places, sym_op, sym_u, + domains=[dofdesc], + context={}, + auto_where=dofdesc, + id_eps=1.0e-10, + _tree_kind="adaptive-level-restricted", + _approx_nproxy=64, + _proxy_radius_factor=1.15) + + # warmup + from pytools import ProcessTimer + with ProcessTimer() as pt: + hmat = build_hmat() + actx.queue.finish() + + logger.info("build(warmup): %s", pt) + + # build + with ProcessTimer() as pt: + hmat = build_hmat() + actx.queue.finish() + + t_build = pt.wall_elapsed + logger.info("build: %s", pt) + + # matvec + with ProcessTimer() as pt: + du = hmat @ u + assert du is not None + actx.queue.finish() + + t_matvec = pt.wall_elapsed + logger.info("matvec: %s", pt) + + return Timings(t_build, t_matvec) + + +def run_scaling_study( + ambient_dim: int, *, + target_order: int = 4, + source_ovsmp: int = 4, + qbx_order: int = 4, + ) -> None: + dd = sym.DOFDescriptor(f"d{ambient_dim}", discr_stage=sym.QBX_SOURCE_STAGE2) + + import pyopencl as cl + ctx = cl.create_some_context() + queue = cl.CommandQueue(ctx) + actx = PyOpenCLArrayContext(queue, force_device_scalars=True) + + eoc_build = EOCRecorder() + eoc_matvec = EOCRecorder() + + import meshmode.mesh.generation as mgen + import meshmode.discretization.poly_element as mpoly + resolutions = [64, 128, 256, 512, 1024, 1536, 2048, 2560, 3072] + + for n in resolutions: + mesh = mgen.make_curve_mesh( + mgen.NArmedStarfish(5, 0.25), + np.linspace(0, 1, n), + order=target_order) + + from meshmode.discretization import Discretization + pre_density_discr = Discretization(actx, mesh, + mpoly.InterpolatoryQuadratureGroupFactory(target_order)) + + from pytential.qbx import QBXLayerPotentialSource + qbx = QBXLayerPotentialSource( + pre_density_discr, + fine_order=source_ovsmp * target_order, + qbx_order=qbx_order, + fmm_order=False, fmm_backend=None, + ) + places = GeometryCollection(qbx, auto_where=dd.geometry) + density_discr = places.get_discretization(dd.geometry, dd.discr_stage) + + logger.info("ndofs: %d", density_discr.ndofs) + logger.info("nelements: %d", density_discr.mesh.nelements) + + timings = run_hmatrix_matvec(actx, places, dofdesc=dd) + eoc_build.add_data_point(density_discr.ndofs, timings.build) + eoc_matvec.add_data_point(density_discr.ndofs, timings.matvec) + + for name, eoc in [("build", eoc_build), ("matvec", eoc_matvec)]: + logger.info("%s\n%s", + name, eoc.pretty_print( + abscissa_label="dofs", + error_label=f"{name} (s)", + abscissa_format="%d", + error_format="%.3fs", + eoc_format="%.2f", + ) + ) + visualize_eoc(f"scaling-study-hmatrix-{name}", eoc, 1) + + +def visualize_eoc( + filename: str, eoc: EOCRecorder, order: int, + overwrite: bool = False) -> None: + try: + import matplotlib.pyplot as plt + except ImportError: + logger.info("matplotlib not available for plotting") + return + + fig = plt.figure(figsize=(10, 10), dpi=300) + ax = fig.gca() + + h, error = np.array(eoc.history).T # type: ignore[no-untyped-call] + ax.loglog(h, error, "o-") + + max_h = np.max(h) + min_e = np.min(error) + max_e = np.max(error) + min_h = np.exp(np.log(max_h) + np.log(min_e / max_e) / order) + + ax.loglog( + [max_h, min_h], [max_e, min_e], "k-", label=rf"$\mathcal{{O}}(h^{order})$" + ) + + # }}} + + ax.grid(True, which="major", linestyle="-", alpha=0.75) + ax.grid(True, which="minor", linestyle="--", alpha=0.5) + + ax.set_xlabel("$N$") + ax.set_ylabel("$T~(s)$") + + import pathlib + filename = pathlib.Path(filename) + if not overwrite and filename.exists(): + raise FileExistsError(f"output file '{filename}' already exists") + + fig.savefig(filename) + plt.close(fig) + + +if __name__ == "__main__": + run_scaling_study(ambient_dim=2) diff --git a/pytential/linalg/cluster.py b/pytential/linalg/cluster.py index cb42f0cdc..039cffc9c 100644 --- a/pytential/linalg/cluster.py +++ b/pytential/linalg/cluster.py @@ -227,6 +227,25 @@ def make_block(i: int, j: int): else: raise ValueError(f"unsupported ndarray dimension: '{ndim}'") + +def uncluster(ary: np.ndarray, index: IndexList, clevel: ClusterLevel) -> np.ndarray: + assert ary.shape == (clevel.parent_map.size,) + + if index.nclusters == 1: + return ary + + result = np.empty(index.nclusters, dtype=object) + for ifrom, ppm in enumerate(clevel.parent_map): + offset = 0 + for ito in ppm: + cluster_size = index.cluster_size(ito) + result[ito] = ary[ifrom][offset:offset + cluster_size] + offset += cluster_size + + assert ary[ifrom].shape == (offset,) + + return result + # }}} diff --git a/pytential/linalg/direct_solver_symbolic.py b/pytential/linalg/direct_solver_symbolic.py index 220868d69..44e66d37b 100644 --- a/pytential/linalg/direct_solver_symbolic.py +++ b/pytential/linalg/direct_solver_symbolic.py @@ -20,8 +20,9 @@ THE SOFTWARE. """ -from pytools.obj_array import make_obj_array +import numpy as np +from pytools.obj_array import make_obj_array from pytential.symbolic.mappers import ( IdentityMapper, OperatorCollector, LocationTagger) @@ -44,9 +45,12 @@ class PROXY_SKELETONIZATION_TARGET: # noqa: N801 def prepare_expr(places, exprs, auto_where=None): from pytential.symbolic.execution import _prepare_expr - return make_obj_array([ - _prepare_expr(places, expr, auto_where=auto_where) - for expr in exprs]) + if isinstance(exprs, np.ndarray): + return make_obj_array([ + _prepare_expr(places, expr, auto_where=auto_where) + for expr in exprs]) + + return _prepare_expr(places, exprs, auto_where=auto_where) def prepare_proxy_expr(places, exprs, auto_where=None): diff --git a/pytential/linalg/hmatrix.py b/pytential/linalg/hmatrix.py new file mode 100644 index 000000000..4d518493c --- /dev/null +++ b/pytential/linalg/hmatrix.py @@ -0,0 +1,418 @@ +__copyright__ = "Copyright (C) 2022 Alexandru Fikl" + +__license__ = """ +Permission is hereby granted, free of charge, to any person obtaining a copy +of this software and associated documentation files (the "Software"), to deal +in the Software without restriction, including without limitation the rights +to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +copies of the Software, and to permit persons to whom the Software is +furnished to do so, subject to the following conditions: + +The above copyright notice and this permission notice shall be included in +all copies or substantial portions of the Software. + +THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN +THE SOFTWARE. +""" + +from dataclasses import dataclass +from typing import Any, Dict, Iterable, Optional, Union + +import numpy as np +import numpy.linalg as la + +from arraycontext import PyOpenCLArrayContext, ArrayOrContainerT, flatten, unflatten +from meshmode.dof_array import DOFArray + +from pytential import GeometryCollection, sym +from pytential.linalg.proxy import ProxyGeneratorBase +from pytential.linalg.cluster import ClusterTree +from pytential.linalg.skeletonization import SkeletonizationWrangler + +__doc__ = """ +Hierarical Matrix Construction +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +.. autoclass:: ProxyHierarchicalMatrix +.. autofunction:: build_hmatrix_by_proxy +""" + + +# {{{ error model + +def hmatrix_error_from_param( + ambient_dim: int, + *, + id_eps: float, + id_rank: int, + min_proxy_radius: float, + max_cluster_radius: float, + nproxies: int, + nsources: int, + ntargets: int, c: float = 1.0e-3) -> float: + if ambient_dim == 2: + p = int(0.5 * id_rank) + elif ambient_dim == 3: + p = int((np.sqrt(1 + 4 * id_rank) - 1) / 2) + else: + raise ValueError(f"unsupported ambient dimension: '{ambient_dim}'") + + rho = alpha = max_cluster_radius / min_proxy_radius + return ( + c * rho ** (p + 1) / (1 - rho) + + np.sqrt(nsources / nproxies) + * (1 - alpha ** (p + 1)) / (1 - alpha) * id_eps + ) + + +# }}} + + +# {{{ ProxyHierarchicalMatrix + +@dataclass(frozen=True) +class ProxyHierarchicalMatrix: + """ + .. attribute:: skeletons + + An :class:`~numpy.ndarray` containing skeletonization information + for each level of the hierarchy. For additional details, see + :class:`~pytential.linalg.skeletonization.SkeletonizationResult`. + + This class implements the :class:`scipy.sparse.linalg.LinearOperator` + interface. In particular, the following attributes and methods: + + .. attribute:: shape + + A :class:`tuple` that gives the matrix size ``(m, n)``. + + .. attribute:: dtype + + The data type of the matrix entries. + + .. automethod:: matvec + .. automethod:: __matmul__ + """ + + wrangler: SkeletonizationWrangler + proxy: ProxyGeneratorBase + ctree: ClusterTree + method: str + + skeletons: np.ndarray + + @property + def shape(self): + return self.skeletons[0].tgt_src_index.shape + + @property + def dtype(self): + # FIXME: assert that everyone has this dtype? + return self.skeletons[0].R[0].dtype + + @property + def nlevels(self): + return self.skeletons.size + + @property + def nclusters(self): + return self.skeletons[0].nclusters + + def matvec(self, x: ArrayOrContainerT) -> ArrayOrContainerT: + """Implements a matrix-vector multiplication :math:`H x`.""" + from arraycontext import get_container_context_recursively_opt + actx = get_container_context_recursively_opt(x) + if actx is None: + raise ValueError("input array is frozen") + + if self.method == "forward": + return apply_skeleton_forward_matvec(actx, self, x) + elif self.method == "backward": + return apply_skeleton_backward_matvec(actx, self, x) + else: + raise ValueError(f"unknown matvec method: '{self.method}'") + + def __matmul__(self, x: ArrayOrContainerT) -> ArrayOrContainerT: + """Same as :meth:`matvec`.""" + return self.matvec(x) + + def rmatvec(self, x): + raise NotImplementedError + + def matmat(self, mat): + raise NotImplementedError + + def rmatmat(self, mat): + raise NotImplementedError + + +def apply_skeleton_forward_matvec( + actx: PyOpenCLArrayContext, + hmat: ProxyHierarchicalMatrix, + ary: ArrayOrContainerT, + ) -> ArrayOrContainerT: + if not isinstance(ary, DOFArray): + raise TypeError(f"unsupported array container: '{type(ary).__name__}'") + + from pytential.linalg.utils import split_array + targets, sources = hmat.skeletons[0].tgt_src_index + x = split_array(actx.to_numpy(flatten(ary, actx)), sources) + + # NOTE: this computes a telescoping product of the form + # + # A x_0 = (D0 + L0 (D1 + L1 (...) R1) R0) x_0 + # + # with arbitrary numbers of levels. When recursing down, we compute + # + # x_{k + 1} = R_k x_k + # z_{k + 1} = D_k x_k + # + # and, at the root level, we have + # + # x_{N + 1} = z_{N + 1} = D_N x_N. + # + # When recursing back up, we take `b_{N + 1} = x_{N + 1}` and + # + # b_{k - 1} = z_k + L_k b_k + # + # which gives back the desired product when we reach the leaf level again. + + d_dot_x = np.empty(hmat.nlevels, dtype=object) + + # {{{ recurse down + + from pytential.linalg.cluster import cluster + for k, clevel in enumerate(hmat.ctree.levels): + skeleton = hmat.skeletons[k] + assert x.shape == (skeleton.nclusters,) + assert skeleton.tgt_src_index.shape[1] == sum([xi.size for xi in x]) + + d_dot_x_k = np.empty(skeleton.nclusters, dtype=object) + r_dot_x_k = np.empty(skeleton.nclusters, dtype=object) + + for i in range(skeleton.nclusters): + r_dot_x_k[i] = skeleton.R[i] @ x[i] + d_dot_x_k[i] = skeleton.D[i] @ x[i] + + d_dot_x[k] = d_dot_x_k + x = cluster(r_dot_x_k, clevel) + + # }}} + + # {{{ root + + # NOTE: at root level, we just multiply with the full diagonal + b = d_dot_x[hmat.nlevels - 1] + assert b.shape == (1,) + + # }}} + + # {{{ recurse up + + from pytential.linalg.cluster import uncluster + + for k, clevel in reversed(list(enumerate(hmat.ctree.levels[:-1]))): + skeleton = hmat.skeletons[k] + d_dot_x_k = d_dot_x[k] + assert d_dot_x_k.shape == (skeleton.nclusters,) + + b = uncluster(b, skeleton.skel_tgt_src_index.targets, clevel) + for i in range(skeleton.nclusters): + b[i] = d_dot_x_k[i] + skeleton.L[i] @ b[i] + + assert b.shape == (hmat.nclusters,) + + # }}} + + b = np.concatenate(b)[np.argsort(targets.indices)] + return unflatten(ary, actx.from_numpy(b), actx) + + +def apply_skeleton_backward_matvec( + actx: PyOpenCLArrayContext, + hmat: ProxyHierarchicalMatrix, + ary: ArrayOrContainerT, + ) -> ArrayOrContainerT: + if not isinstance(ary, DOFArray): + raise TypeError(f"unsupported array container: '{type(ary).__name__}'") + + from pytential.linalg.utils import split_array + targets, sources = hmat.skeletons[0].tgt_src_index + + b = split_array(actx.to_numpy(flatten(ary, actx)), targets) + r_dot_b = np.empty(hmat.nlevels, dtype=object) + + # {{{ recurse down + + # NOTE: this solves a telescoping product of the form + # + # A x_0 = (D0 + L0 (D1 + L1 (...) R1) R0) x_0 = b_0 + # + # with arbitrary numbers of levels. When recursing down, we compute + # + # b_{k + 1} = \hat{D}_k R_k D_k^{-1} b_k + # \hat{D}_k = (R_k D_k^{-1} L_k)^{-1} + # + # and, at the root level, we solve + # + # D_N x_N = b_N. + # + # When recursing back up, we take `b_{N + 1} = x_{N + 1}` and + # + # x_{k} = D_k^{-1} (b_k - L_k b_{k + 1} + L_k \hat{D}_k x_{k + 1}) + # + # which gives back the desired product when we reach the leaf level again. + + from pytential.linalg.cluster import cluster + + for k, clevel in enumerate(hmat.ctree.levels): + skeleton = hmat.skeletons[k] + assert b.shape == (skeleton.nclusters,) + assert skeleton.tgt_src_index.shape[0] == sum([bi.size for bi in b]) + + dhat_dot_b_k = np.empty(skeleton.nclusters, dtype=object) + for i in range(skeleton.nclusters): + dhat_dot_b_k[i] = ( + skeleton.Dhat[i] @ (skeleton.R[i] @ (skeleton.invD[i] @ b[i])) + ) + + r_dot_b[k] = b + b = cluster(dhat_dot_b_k, clevel) + + # }}} + + # {{{ root + + from pytools.obj_array import make_obj_array + assert b.shape == (1,) + x = make_obj_array([ + la.solve(D, bi) for D, bi in zip(hmat.skeletons[-1].D, b) + ]) + + # }}} + + # {{{ recurse up + + from pytential.linalg.cluster import uncluster + + for k, clevel in reversed(list(enumerate(hmat.ctree.levels[:-1]))): + skeleton = hmat.skeletons[k] + b0 = r_dot_b[k] + b1 = r_dot_b[k + 1] + assert b0.shape == (skeleton.nclusters,) + + x = uncluster(x, skeleton.skel_tgt_src_index.sources, clevel) + b1 = uncluster(b1, skeleton.skel_tgt_src_index.targets, clevel) + + for i in range(skeleton.nclusters): + sx = b1[i] - skeleton.Dhat[i] @ x[i] + x[i] = skeleton.invD[i] @ (b0[i] - skeleton.L[i] @ sx) + + assert x.shape == (hmat.nclusters,) + + # }}} + + x = np.concatenate(x)[np.argsort(sources.indices)] + return unflatten(ary, actx.from_numpy(x), actx) + +# }}} + + +# {{{ build_hmatrix_by_proxy + +def build_hmatrix_by_proxy( + actx: PyOpenCLArrayContext, + places: GeometryCollection, + exprs: Union[sym.Expression, Iterable[sym.Expression]], + input_exprs: Union[sym.Expression, Iterable[sym.Expression]], *, + matvec: str = "forward", + auto_where: Optional[sym.DOFDescriptorLike] = None, + domains: Optional[Iterable[sym.DOFDescriptorLike]] = None, + context: Optional[Dict[str, Any]] = None, + id_eps: float = 1.0e-8, + + # NOTE: these are dev variables and can disappear at any time! + # TODO: plugin in error model to get an estimate for: + # * how many points we want per cluster? + # * how many proxy points we want? + # * how far away should the proxy points be? + # based on id_eps. How many of these should be user tunable? + _tree_kind: Optional[str] = "adaptive-level-restricted", + _max_particles_in_box: Optional[int] = None, + + _approx_nproxy: Optional[int] = None, + _proxy_radius_factor: Optional[float] = None, + ) -> ProxyHierarchicalMatrix: + if matvec not in ("forward", "backward"): + raise ValueError(f"unknown matvec: '{matvec}'") + + from pytential.symbolic.matrix import P2PClusterMatrixBuilder + from pytential.linalg.skeletonization import make_skeletonization_wrangler + + def P2PClusterMatrixBuilderWithDiagonal(*args, **kwargs): + kwargs["exclude_self"] = True + return P2PClusterMatrixBuilder(*args, **kwargs) + + wrangler = make_skeletonization_wrangler( + places, exprs, input_exprs, + domains=domains, context=context, auto_where=auto_where, + # _weighted_proxy=False, + # _neighbor_cluster_builder=P2PClusterMatrixBuilderWithDiagonal, + # _proxy_source_cluster_builder=P2PClusterMatrixBuilder, + # _proxy_target_cluster_builder=P2PClusterMatrixBuilder, + ) + + if wrangler.nrows != 1 or wrangler.ncols != 1: + raise ValueError("multi-block operators are not supported") + + from pytential.linalg.proxy import QBXProxyGenerator + proxy = QBXProxyGenerator(places, + approx_nproxy=_approx_nproxy, + radius_factor=_proxy_radius_factor) + + from pytential.linalg.cluster import partition_by_nodes + cluster_index, ctree = partition_by_nodes( + actx, places, + dofdesc=wrangler.domains[0], + tree_kind=_tree_kind, + max_particles_in_box=_max_particles_in_box) + + from pytential.linalg.utils import TargetAndSourceClusterList + tgt_src_index = TargetAndSourceClusterList( + targets=cluster_index, sources=cluster_index) + + from pytential.linalg.skeletonization import rec_skeletonize_by_proxy + skeletons = rec_skeletonize_by_proxy( + actx, places, ctree, tgt_src_index, exprs, input_exprs, + id_eps=id_eps, + max_particles_in_box=_max_particles_in_box, + _proxy=proxy, + _wrangler=wrangler, + ) + + from pytential.linalg.skeletonization import _fix_skeleton_diagonal + parent = None + + for i, clevel in enumerate(ctree.levels): + if i == 0: + parent = clevel + continue + + D = skeletons[i - 1].Dhat if matvec == "backward" else None + skeletons[i] = _fix_skeleton_diagonal( + skeletons[i], skeletons[i - 1], parent, diagonal=D) + + parent = clevel + + return ProxyHierarchicalMatrix( + wrangler=wrangler, proxy=proxy, ctree=ctree, method=matvec, + skeletons=skeletons) + +# }}} + +# vim: foldmethod=marker diff --git a/pytential/linalg/proxy.py b/pytential/linalg/proxy.py index 41a890a3f..a52638c4a 100644 --- a/pytential/linalg/proxy.py +++ b/pytential/linalg/proxy.py @@ -354,7 +354,7 @@ def __call__(self, discr = self.places.get_discretization( source_dd.geometry, source_dd.discr_stage) - include_cluster_radii = kwargs.pop("include_cluster_radii", False) + include_cluster_radii = kwargs.pop("include_cluster_radii", True) # {{{ get proxy centers and radii diff --git a/pytential/linalg/skeletonization.py b/pytential/linalg/skeletonization.py index e774f55cf..bedef9be8 100644 --- a/pytential/linalg/skeletonization.py +++ b/pytential/linalg/skeletonization.py @@ -26,8 +26,10 @@ TYPE_CHECKING) import numpy as np +import numpy.linalg as la from arraycontext import PyOpenCLArrayContext, Array, ArrayT +from pytools import memoize_method from pytential import GeometryCollection, sym from pytential.linalg.proxy import ProxyGeneratorBase, ProxyClusterGeometryData @@ -437,7 +439,10 @@ def make_skeletonization_wrangler( input_exprs = [input_exprs] from pytential.symbolic.execution import _prepare_auto_where + if auto_where is None and domains is not None: + auto_where = domains[0] auto_where = _prepare_auto_where(auto_where, places) + from pytential.symbolic.execution import _prepare_domains domains = _prepare_domains(len(input_exprs), places, domains, auto_where[0]) @@ -637,8 +642,8 @@ def _skeletonize_block_by_proxy_with_mats( ibrow=ibrow, ibcol=ibcol) ) - src_skl_indices = np.empty(nclusters, dtype=object) - tgt_skl_indices = np.empty(nclusters, dtype=object) + src_skel_indices = np.empty(nclusters, dtype=object) + tgt_skel_indices = np.empty(nclusters, dtype=object) skel_starts = np.zeros(nclusters + 1, dtype=np.int32) L = np.empty(nclusters, dtype=object) @@ -661,14 +666,14 @@ def _skeletonize_block_by_proxy_with_mats( assert k > 0 L[i] = interp.T - tgt_skl_indices[i] = tgt_src_index.targets.cluster_indices(i)[idx[:k]] + tgt_skel_indices[i] = tgt_src_index.targets.cluster_indices(i)[idx[:k]] # skeletonize source points k, idx, interp = interp_decomp(src_mat, rank=k, eps=None) assert k > 0 R[i] = interp - src_skl_indices[i] = tgt_src_index.sources.cluster_indices(i)[idx[:k]] + src_skel_indices[i] = tgt_src_index.sources.cluster_indices(i)[idx[:k]] skel_starts[i + 1] = skel_starts[i] + k assert R[i].shape == (k, src_mat.shape[1]) @@ -679,9 +684,9 @@ def _skeletonize_block_by_proxy_with_mats( D = make_flat_cluster_diag(mat, tgt_src_index) from pytential.linalg import TargetAndSourceClusterList, make_index_list - src_skl_index = make_index_list(np.hstack(src_skl_indices), skel_starts) - tgt_skl_index = make_index_list(np.hstack(tgt_skl_indices), skel_starts) - skel_tgt_src_index = TargetAndSourceClusterList(tgt_skl_index, src_skl_index) + src_skel_index = make_index_list(np.hstack(src_skel_indices), skel_starts) + tgt_skel_index = make_index_list(np.hstack(tgt_skel_indices), skel_starts) + skel_tgt_src_index = TargetAndSourceClusterList(tgt_skel_index, src_skel_index) return SkeletonizationResult( L=L, R=R, D=D, @@ -776,6 +781,21 @@ def __post_init__(self): def nclusters(self): return self.tgt_src_index.nclusters + @property + @memoize_method + def invD(self) -> np.ndarray: + from pytools.obj_array import make_obj_array + return make_obj_array([la.inv(D) for D in self.D]) + + @property + @memoize_method + def Dhat(self) -> np.ndarray: + from pytools.obj_array import make_obj_array + return make_obj_array([ + la.inv(self.R[i] @ self.invD[i] @ self.L[i]) + for i in range(self.nclusters) + ]) + def skeletonize_by_proxy( actx: PyOpenCLArrayContext, @@ -866,7 +886,8 @@ def _evaluate_root_diagonal( def _fix_skeleton_diagonal( skeleton: SkeletonizationResult, parent: Optional[SkeletonizationResult], - clevel: Optional[ClusterLevel]) -> SkeletonizationResult: + clevel: Optional[ClusterLevel], + diagonal: Optional[np.ndarray] = None) -> SkeletonizationResult: """Due to the evaluation in :func:`_skeletonize_block_by_proxy_with_mats`, the diagonal matrix in *skeleton* also contains the indices from its parent. In particular, at a level :math:`l` we need the diagonal block:: @@ -885,6 +906,12 @@ def _fix_skeleton_diagonal( assert parent is not None assert skeleton.tgt_src_index.shape == parent.skel_tgt_src_index.shape + if diagonal is None: + diagonal = np.zeros(parent.nclusters) + + assert diagonal.size == parent.nclusters + targets, sources = parent.skel_tgt_src_index + # FIXME: nicer way to do this? mat = np.empty(skeleton.nclusters, dtype=object) for k in range(skeleton.nclusters): @@ -892,9 +919,9 @@ def _fix_skeleton_diagonal( i = j = 0 for icluster in clevel.parent_map[k]: - di = parent.skel_tgt_src_index.targets.cluster_size(icluster) - dj = parent.skel_tgt_src_index.sources.cluster_size(icluster) - D[np.s_[i:i + di], np.s_[j:j + dj]] = 0.0 + di = targets.cluster_size(icluster) + dj = sources.cluster_size(icluster) + D[np.s_[i:i + di], np.s_[j:j + dj]] = diagonal[icluster] i += di j += dj @@ -965,9 +992,6 @@ def rec_skeletonize_by_proxy( id_rank=None, max_particles_in_box=max_particles_in_box) - skeleton = _fix_skeleton_diagonal( - skeleton, skel_per_level[i - 1], parent_level) - skel_per_level[i] = skeleton tgt_src_index = cluster(skeleton.skel_tgt_src_index, clevel) parent_level = clevel @@ -978,7 +1002,6 @@ def rec_skeletonize_by_proxy( # evaluate the root skeleton = _evaluate_root_diagonal(actx, 0, 0, places, wrangler, tgt_src_index) - skeleton = _fix_skeleton_diagonal(skeleton, skel_per_level[-2], parent_level) skel_per_level[-1] = skeleton return skel_per_level diff --git a/pytential/linalg/utils.py b/pytential/linalg/utils.py index c1f3115d4..2007d9747 100644 --- a/pytential/linalg/utils.py +++ b/pytential/linalg/utils.py @@ -88,6 +88,9 @@ def cluster_size(self, i: int) -> int: return self.starts[i + 1] - self.starts[i] + def cluster_slice(self, i: int) -> slice: + return np.s_[self.starts[i]:self.starts[i + 1]] + def cluster_indices(self, i: int) -> np.ndarray: """ :returns: a view into the :attr:`indices` array for the range @@ -97,7 +100,7 @@ def cluster_indices(self, i: int) -> np.ndarray: raise IndexError( f"cluster {i} is out of bounds for {self.nclusters} clusters") - return self.indices[self.starts[i]:self.starts[i + 1]] + return self.indices[self.cluster_slice(i)] def cluster_take(self, x: np.ndarray, i: int) -> np.ndarray: """ @@ -334,6 +337,15 @@ def make_flat_cluster_diag( return cluster_mat + +def split_array(x: np.ndarray, index: IndexList) -> np.ndarray: + assert x.size == index.nindices + + from pytools.obj_array import make_obj_array + return make_obj_array([ + index.cluster_take(x, i) for i in range(index.nclusters) + ]) + # }}} @@ -440,6 +452,22 @@ def mnorm(x: np.ndarray, y: np.ndarray) -> float: return tgt_error, src_error +def skeletonization_matrix( + mat: np.ndarray, skeleton: "SkeletonizationResult", + ) -> Tuple[np.ndarray, np.ndarray]: + D = np.empty(skeleton.nclusters, dtype=object) + S = np.empty((skeleton.nclusters, skeleton.nclusters), dtype=object) + + from itertools import product + for i, j in product(range(skeleton.nclusters), repeat=2): + if i == j: + D[i] = skeleton.tgt_src_index.cluster_take(mat, i, i) + else: + S[i, j] = skeleton.skel_tgt_src_index.cluster_take(mat, i, j) + + return D, S + + def skeletonization_error( mat: np.ndarray, skeleton: "SkeletonizationResult", *, ord: Optional[float] = None, diff --git a/test/extra_matrix_data.py b/test/extra_matrix_data.py index eb7ffd4a9..b03f2fec7 100644 --- a/test/extra_matrix_data.py +++ b/test/extra_matrix_data.py @@ -43,14 +43,23 @@ class MatrixTestCaseMixin: proxy_target_cluster_builder: Callable[..., Any] = None neighbor_cluster_builder: Callable[..., Any] = None - def get_cluster_index(self, actx, places, dofdesc=None): + def max_particles_in_box_for_discr(self, discr): + max_particles_in_box = self.max_particles_in_box + if max_particles_in_box is None: + max_particles_in_box = discr.ndofs // self.approx_cluster_count + + return max_particles_in_box + + def get_cluster_index( + self, actx, places, dofdesc=None, max_particles_in_box=None): if dofdesc is None: dofdesc = places.auto_source discr = places.get_discretization(dofdesc.geometry) - max_particles_in_box = self.max_particles_in_box if max_particles_in_box is None: - max_particles_in_box = discr.ndofs // self.approx_cluster_count + max_particles_in_box = self.max_particles_in_box + if max_particles_in_box is None: + max_particles_in_box = discr.ndofs // self.approx_cluster_count from pytential.linalg.cluster import partition_by_nodes cindex, ctree = partition_by_nodes(actx, places, @@ -76,9 +85,11 @@ def get_cluster_index(self, actx, places, dofdesc=None): return cindex, ctree - def get_tgt_src_cluster_index(self, actx, places, dofdesc=None): + def get_tgt_src_cluster_index( + self, actx, places, dofdesc=None, max_particles_in_box=None): from pytential.linalg import TargetAndSourceClusterList - cindex, ctree = self.get_cluster_index(actx, places, dofdesc=dofdesc) + cindex, ctree = self.get_cluster_index( + actx, places, dofdesc=dofdesc, max_particles_in_box=max_particles_in_box) return TargetAndSourceClusterList(cindex, cindex), ctree def get_operator(self, ambient_dim, qbx_forced_limit=_NoArgSentinel): diff --git a/test/test_linalg_cluster.py b/test/test_linalg_cluster.py index 4a261e7ea..631cf03d3 100644 --- a/test/test_linalg_cluster.py +++ b/test/test_linalg_cluster.py @@ -74,6 +74,10 @@ def test_cluster_tree(actx_factory, case, tree_kind, visualize=False): srcindex, ctree = case.get_cluster_index(actx, places) assert srcindex.nclusters == ctree.nclusters + from pytential.linalg.utils import split_array + rng = np.random.default_rng(42) + x = split_array(rng.random(srcindex.indices.shape), srcindex) + logger.info("nclusters %4d nlevels %4d", srcindex.nclusters, ctree.nlevels) if visualize and ctree._tree is not None: @@ -88,7 +92,7 @@ def test_cluster_tree(actx_factory, case, tree_kind, visualize=False): fig.savefig("test_cluster_tree") - from pytential.linalg.cluster import cluster + from pytential.linalg.cluster import cluster, uncluster for clevel in ctree.levels: logger.info("======== Level %d", clevel.level) logger.info("box_ids %s", clevel.box_ids) @@ -104,8 +108,12 @@ def test_cluster_tree(actx_factory, case, tree_kind, visualize=False): assert partition.size == next_srcindex.cluster_size(i) assert np.allclose(partition, next_srcindex.cluster_indices(i)) - srcindex = next_srcindex + y = cluster(x, clevel) + z = uncluster(y, srcindex, clevel) + assert all([np.allclose(xi, zi) for xi, zi in zip(x, z)]) + srcindex = next_srcindex + x = y # }}} diff --git a/test/test_linalg_hmatrix.py b/test/test_linalg_hmatrix.py new file mode 100644 index 000000000..dc7de123d --- /dev/null +++ b/test/test_linalg_hmatrix.py @@ -0,0 +1,526 @@ +__copyright__ = "Copyright (C) 2022 Alexandru Fikl" + +__license__ = """ +Permission is hereby granted, free of charge, to any person obtaining a copy +of this software and associated documentation files (the "Software"), to deal +in the Software without restriction, including without limitation the rights +to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +copies of the Software, and to permit persons to whom the Software is +furnished to do so, subject to the following conditions: + +The above copyright notice and this permission notice shall be included in +all copies or substantial portions of the Software. + +THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN +THE SOFTWARE. +""" + +from dataclasses import replace +import pytest + +import numpy as np + +from pytential import bind, sym +from pytential import GeometryCollection + +from meshmode.mesh.generation import NArmedStarfish + +from meshmode import _acf # noqa: F401 +from arraycontext import pytest_generate_tests_for_array_contexts +from meshmode.array_context import PytestPyOpenCLArrayContextFactory + +import extra_matrix_data as extra +import logging +logger = logging.getLogger(__name__) + +pytest_generate_tests = pytest_generate_tests_for_array_contexts([ + PytestPyOpenCLArrayContextFactory, + ]) + + +HMATRIX_TEST_CASES = [ + extra.CurveTestCase( + name="starfish", + op_type="scalar", + target_order=4, + curve_fn=NArmedStarfish(5, 0.25), + resolutions=[512]), + extra.CurveTestCase( + name="starfish", + op_type="double", + target_order=4, + curve_fn=NArmedStarfish(5, 0.25), + resolutions=[512]), + extra.TorusTestCase( + target_order=4, + op_type="scalar", + resolutions=[0]) + ] + + +# {{{ test_hmatrix_forward_matvec_single_level + +def hmatrix_matvec_single_level(mat, x, skeleton): + from pytential.linalg.utils import split_array + targets, sources = skeleton.tgt_src_index + y = split_array(x, sources) + + yhat = np.empty(y.shape, dtype=object) + + for i in range(skeleton.nclusters): + yhat[i] = skeleton.R[i] @ y[i] + + from pytential.linalg.utils import skeletonization_matrix + D, S = skeletonization_matrix(mat, skeleton) + syhat = np.zeros(y.shape, dtype=object) + + from itertools import product + for i, j in product(range(skeleton.nclusters), repeat=2): + if i == j: + continue + + syhat[i] = syhat[i] + S[i, j] @ yhat[j] + + for i in range(skeleton.nclusters): + y[i] = D[i] @ y[i] + skeleton.L[i] @ syhat[i] + + return np.concatenate(y)[np.argsort(targets.indices)] + + +@pytest.mark.parametrize("case", HMATRIX_TEST_CASES) +@pytest.mark.parametrize("discr_stage", [sym.QBX_SOURCE_STAGE1]) +def test_hmatrix_forward_matvec_single_level( + actx_factory, case, discr_stage, visualize=False): + actx = actx_factory() + + if visualize: + logging.basicConfig(level=logging.INFO) + + if case.ambient_dim == 2: + kwargs = {"proxy_approx_count": 64, "proxy_radius_factor": 1.15} + else: + kwargs = {"proxy_approx_count": 256, "proxy_radius_factor": 1.25} + + case = replace(case, skel_discr_stage=discr_stage, **kwargs) + logger.info("\n%s", case) + + # {{{ geometry + + dd = sym.DOFDescriptor(case.name, discr_stage=case.skel_discr_stage) + qbx = case.get_layer_potential(actx, case.resolutions[-1], case.target_order) + places = GeometryCollection(qbx, auto_where=dd) + + density_discr = places.get_discretization(dd.geometry, dd.discr_stage) + tgt_src_index, _ = case.get_tgt_src_cluster_index(actx, places, dd) + + logger.info("dd %s", dd) + logger.info("nclusters %3d ndofs %7d", + tgt_src_index.nclusters, density_discr.ndofs) + + # }}} + + # {{{ construct reference + + from pytential.linalg.direct_solver_symbolic import prepare_expr + from pytential.symbolic.matrix import MatrixBuilder + sym_u, sym_op = case.get_operator(places.ambient_dim) + mat = MatrixBuilder( + actx, + dep_expr=sym_u, + other_dep_exprs=[], + dep_source=qbx, + dep_discr=density_discr, + places=places, + context={}, + )(prepare_expr(places, sym_op, (dd, dd))) + + from arraycontext import flatten, unflatten + x = actx.thaw(density_discr.nodes()[0]) + y = actx.to_numpy(flatten(x, actx)) + r_lpot = unflatten(x, actx.from_numpy(mat @ y), actx) + + # }}} + + # {{{ check matvec + + id_eps = 10.0 ** (-np.arange(2, 16)) + rec_error = np.zeros_like(id_eps) + + from pytools.convergence import EOCRecorder + eoc = EOCRecorder() + + from pytential.linalg.skeletonization import skeletonize_by_proxy + for i in range(id_eps.size): + skeleton = skeletonize_by_proxy( + actx, places, tgt_src_index, sym_op, sym_u, + domains=[dd], context={}, + approx_nproxy=case.proxy_approx_count, + proxy_radius_factor=case.proxy_radius_factor, + id_eps=id_eps[i], + ) + r_hmat = hmatrix_matvec_single_level(mat, y, skeleton[0, 0]) + r_hmat = unflatten(x, actx.from_numpy(r_hmat), actx) + + from meshmode.dof_array import flat_norm + rec_error[i] = actx.to_numpy( + flat_norm(r_hmat - r_lpot) / flat_norm(r_lpot) + ) + logger.info("id_eps %.2e error: %.12e", id_eps[i], rec_error[i]) + # assert rec_error[i] < 0.1 + + eoc.add_data_point(id_eps[i], rec_error[i]) + + logger.info("\n%s", eoc.pretty_print( + abscissa_format="%.8e", + error_format="%.8e", + eoc_format="%.2f")) + + # }}} + + if not visualize: + return + + import matplotlib.pyplot as pt + fig = pt.figure(figsize=(10, 10), dpi=300) + ax = fig.gca() + + ax.loglog(id_eps, id_eps, "k--") + ax.loglog(id_eps, rec_error) + + ax.grid(True) + ax.set_xlabel(r"$\epsilon_{id}$") + ax.set_ylabel("$Error$") + ax.set_title(case.name) + + basename = "linalg_hmatrix_single_matvec" + fig.savefig(f"{basename}_{case.name}_{case.op_type}_convergence") + + if case.ambient_dim == 2: + fig.clf() + ax = fig.gca() + + from arraycontext import flatten + r_hmap = actx.to_numpy(flatten(r_hmat, actx)) + r_lpot = actx.to_numpy(flatten(r_lpot, actx)) + + ax.semilogy(r_hmap - r_lpot) + ax.set_ylim([1.0e-16, 1.0]) + fig.savefig(f"{basename}_{case.name}_{case.op_type}_error") + + pt.close(fig) + +# }}} + + +# {{{ test_hmatrix_forward_matvec + +@pytest.mark.parametrize("case", [ + HMATRIX_TEST_CASES[0], + HMATRIX_TEST_CASES[1], + pytest.param(HMATRIX_TEST_CASES[2], marks=pytest.mark.slowtest), + ]) +@pytest.mark.parametrize("discr_stage", [ + sym.QBX_SOURCE_STAGE1, + # sym.QBX_SOURCE_STAGE2 + ]) +def test_hmatrix_forward_matvec( + actx_factory, case, discr_stage, p2p=False, visualize=False): + actx = actx_factory() + + if visualize: + logging.basicConfig(level=logging.INFO) + + if case.ambient_dim == 2: + kwargs = {"proxy_approx_count": 64, "proxy_radius_factor": 1.25} + else: + kwargs = {"proxy_approx_count": 256, "proxy_radius_factor": 1.25} + + case = replace(case, skel_discr_stage=discr_stage, **kwargs) + logger.info("\n%s", case) + + # {{{ geometry + + dd = sym.DOFDescriptor(case.name, discr_stage=case.skel_discr_stage) + qbx = case.get_layer_potential(actx, case.resolutions[-1], case.target_order) + places = GeometryCollection(qbx, auto_where=dd) + + density_discr = places.get_discretization(dd.geometry, dd.discr_stage) + max_particles_in_box = case.max_particles_in_box_for_discr(density_discr) + + tgt_src_index, _ = case.get_tgt_src_cluster_index( + actx, places, dd, max_particles_in_box=max_particles_in_box) + + logger.info("dd %s", dd) + logger.info("nclusters %3d ndofs %7d", + tgt_src_index.nclusters, density_discr.ndofs) + + # }}} + + # {{{ construct hmatrix + + from pytential.linalg.hmatrix import build_hmatrix_by_proxy + sym_u, sym_op = case.get_operator(places.ambient_dim) + + x = actx.thaw(density_discr.nodes()[0]) + + if p2p: + # NOTE: this also needs changed in `build_hmatrix_by_proxy` + # to actually evaluate the p2p interactions instead of qbx + from pytential.linalg.direct_solver_symbolic import prepare_expr + from pytential.symbolic.matrix import P2PMatrixBuilder + mat = P2PMatrixBuilder( + actx, + dep_expr=sym_u, + other_dep_exprs=[], + dep_source=qbx, + dep_discr=density_discr, + places=places, + context={}, + )(prepare_expr(places, sym_op, (dd, dd))) + + from arraycontext import flatten, unflatten + y = actx.to_numpy(flatten(x, actx)) + r_lpot = unflatten(x, actx.from_numpy(mat @ y), actx) + else: + r_lpot = bind(places, sym_op, auto_where=dd)(actx, u=x) + + from pytential.linalg.hmatrix import hmatrix_error_from_param + id_eps = 10.0 ** (-np.arange(2, 16)) + rec_error = np.zeros_like(id_eps) + model_error = np.zeros_like(id_eps) + + from pytools.convergence import EOCRecorder + eoc = EOCRecorder() + + for i in range(id_eps.size): + hmat = build_hmatrix_by_proxy(actx, places, sym_op, sym_u, + domains=[dd], + context=case.knl_concrete_kwargs, + id_eps=id_eps[i], + matvec="forward", + _tree_kind=case.tree_kind, + _max_particles_in_box=max_particles_in_box, + _approx_nproxy=case.proxy_approx_count, + _proxy_radius_factor=case.proxy_radius_factor, + ) + + # {{{ skeletonization error + + from meshmode.dof_array import flat_norm + r_hmap = hmat @ x + rec_error[i] = actx.to_numpy( + flat_norm(r_hmap - r_lpot) / flat_norm(r_lpot) + ) + + # }}} + + # {{{ model error + + skeleton = hmat.skeletons[0] + icluster = np.argmax(np.diff(skeleton.skel_tgt_src_index.targets.starts)) + + proxy_radius = actx.to_numpy( + skeleton._src_eval_result.pxy.radii[icluster] + ) + cluster_radius = actx.to_numpy( + skeleton._src_eval_result.pxy._cluster_radii[icluster] + ) + + model_error[i] = hmatrix_error_from_param( + places.ambient_dim, + id_eps=id_eps[i], + min_proxy_radius=proxy_radius, + max_cluster_radius=cluster_radius, + id_rank=skeleton.skel_tgt_src_index.targets.cluster_size(icluster), + nproxies=skeleton._src_eval_result.pxy.pxyindex.cluster_size(icluster), + ntargets=skeleton.tgt_src_index.targets.cluster_size(icluster), + nsources=skeleton.tgt_src_index.targets.cluster_size(icluster), + c=1.0e-8 + ) + + # }}} + + logger.info("id_eps %.2e error: %.12e (%.12e)", + id_eps[i], rec_error[i], model_error[i]) + eoc.add_data_point(id_eps[i], rec_error[i]) + + logger.info("\n%s", eoc.pretty_print( + abscissa_format="%.8e", + error_format="%.8e", + eoc_format="%.2f")) + + assert eoc.order_estimate() > 0.6 + + # }}} + + if not visualize: + return + + import matplotlib.pyplot as pt + fig = pt.figure(figsize=(10, 10), dpi=300) + ax = fig.gca() + + ax.loglog(id_eps, id_eps, "k--") + ax.loglog(id_eps, rec_error) + ax.loglog(id_eps, model_error) + + ax.grid(True) + ax.set_xlabel(r"$\epsilon_{id}$") + ax.set_ylabel("$Error$") + ax.set_title(case.name) + + lpot_name = "p2p" if p2p else "qbx" + basename = f"linalg_hmatrix_{lpot_name}_matvec" + fig.savefig(f"{basename}_{case.name}_{case.op_type}_convergence") + + if case.ambient_dim == 2: + fig.clf() + ax = fig.gca() + + from arraycontext import flatten + r_hmap = actx.to_numpy(flatten(r_hmap, actx)) + r_lpot = actx.to_numpy(flatten(r_lpot, actx)) + + ax.semilogy(r_hmap - r_lpot) + ax.set_ylim([1.0e-16, 1.0]) + fig.savefig(f"{basename}_{case.name}_{case.op_type}_error") + + pt.close(fig) + +# }}} + + +# {{{ test_hmatrix_backward_matvec + +@pytest.mark.parametrize("case", [ + HMATRIX_TEST_CASES[0], + HMATRIX_TEST_CASES[1], + pytest.param(HMATRIX_TEST_CASES[2], marks=pytest.mark.slowtest), + ]) +@pytest.mark.parametrize("discr_stage", [ + sym.QBX_SOURCE_STAGE1, + # sym.QBX_SOURCE_STAGE2 + ]) +def test_hmatrix_backward_matvec(actx_factory, case, discr_stage, visualize=False): + actx = actx_factory() + + if visualize: + logging.basicConfig(level=logging.INFO) + + if case.ambient_dim == 2: + kwargs = {"proxy_approx_count": 64, "proxy_radius_factor": 1.25} + else: + kwargs = {"proxy_approx_count": 64, "proxy_radius_factor": 1.25} + + case = replace(case, skel_discr_stage=discr_stage, **kwargs) + logger.info("\n%s", case) + + # {{{ geometry + + dd = sym.DOFDescriptor(case.name, discr_stage=case.skel_discr_stage) + qbx = case.get_layer_potential(actx, case.resolutions[-1], case.target_order) + places = GeometryCollection(qbx, auto_where=dd) + + density_discr = places.get_discretization(dd.geometry, dd.discr_stage) + max_particles_in_box = case.max_particles_in_box_for_discr(density_discr) + + tgt_src_index, _ = case.get_tgt_src_cluster_index( + actx, places, dd, max_particles_in_box=max_particles_in_box) + + logger.info("dd %s", dd) + logger.info("nclusters %3d ndofs %7d", + tgt_src_index.nclusters, density_discr.ndofs) + + # }}} + + # {{{ construct hmatrix + + from pytential.linalg.hmatrix import build_hmatrix_by_proxy + sym_u, sym_op = case.get_operator(places.ambient_dim) + + x_ref = actx.thaw(density_discr.nodes()[0]) + b_ref = bind(places, sym_op, auto_where=dd)(actx, u=x_ref) + + id_eps = 10.0 ** (-np.arange(2, 16)) + rec_error = np.zeros_like(id_eps) + + from pytools.convergence import EOCRecorder + eoc = EOCRecorder() + + for i in range(id_eps.size): + hmat = build_hmatrix_by_proxy(actx, places, sym_op, sym_u, + domains=[dd], + context=case.knl_concrete_kwargs, + id_eps=id_eps[i], + matvec="backward", + _tree_kind=case.tree_kind, + _max_particles_in_box=max_particles_in_box, + _approx_nproxy=case.proxy_approx_count, + _proxy_radius_factor=case.proxy_radius_factor, + ) + x_hmat = hmat @ b_ref + + from meshmode.dof_array import flat_norm + rec_error[i] = actx.to_numpy( + flat_norm(x_hmat - x_ref) / flat_norm(x_ref) + ) + logger.info("id_eps %.2e error: %.12e", id_eps[i], rec_error[i]) + eoc.add_data_point(id_eps[i], rec_error[i]) + + logger.info("\n%s", eoc.pretty_print( + abscissa_format="%.8e", + error_format="%.8e", + eoc_format="%.2f")) + + assert eoc.order_estimate() > 0.6 + + # }}} + + if not visualize: + return + + import matplotlib.pyplot as pt + fig = pt.figure(figsize=(10, 10), dpi=300) + ax = fig.gca() + + ax.loglog(id_eps, id_eps, "k--") + ax.loglog(id_eps, rec_error) + + ax.grid(True) + ax.set_xlabel(r"$\epsilon_{id}$") + ax.set_ylabel("$Error$") + ax.set_title(case.name) + + fig.savefig(f"linalg_hmatrix_inverse_{case.name}_{case.op_type}_convergence") + + if case.ambient_dim == 2: + fig.clf() + ax = fig.gca() + + from arraycontext import flatten + x_hmat = actx.to_numpy(flatten(x_hmat, actx)) + x_ref = actx.to_numpy(flatten(x_ref, actx)) + + ax.semilogy(x_hmat - x_ref) + ax.set_ylim([1.0e-16, 1.0]) + fig.savefig(f"linalg_hmatrix_inverse_{case.name}_{case.op_type}_error") + + pt.close(fig) + +# }}} + + +if __name__ == "__main__": + import sys + if len(sys.argv) > 1: + exec(sys.argv[1]) + else: + from pytest import main + main([__file__]) + +# vim: fdm=marker