-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathdata_handler.py
1443 lines (1225 loc) · 51.7 KB
/
data_handler.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
from __future__ import annotations
import logging
from matchms.exporting import save_as_mgf
from matchms.importing import load_from_mgf
from matchms import Spectrum
import pandas as pd
import polars as pl
from pathlib import Path
from enum import Enum
import glob
import os
import random
import tempfile
from typing import Iterator, Callable, Any, cast
import uuid
import numpy as np
import asyncio
from concurrent.futures import ThreadPoolExecutor
import shutil
from datasets import Dataset, load_dataset
from instanovo.constants import (
PROTON_MASS_AMU,
MSColumns,
MS_TYPES,
ANNOTATED_COLUMN,
ANNOTATION_ERROR,
)
from instanovo.utils import Metrics
from instanovo.utils.msreader import read_mzml, read_mzxml
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
class SpectrumDataFrame:
"""Spectra data class.
A data class for interacting with mass spectra data, including loading, processing,
and saving mass spectrometry data in various formats such as Parquet, MGF, and others.
Supports lazy loading, shuffling, and handling of large datasets by processing them
in chunks.
Attributes:
is_annotated (bool): Whether the dataset is annotated with peptide sequences.
has_predictions (bool): Whether the dataset contains predictions.
is_lazy (bool): Whether lazy loading mode is used.
"""
# flake8: noqa: CCR001
def __init__(
self,
df: pl.DataFrame | None = None,
file_paths: str | list[str] | None = None,
is_annotated: bool = False,
has_predictions: bool = False,
is_lazy: bool = False,
shuffle: bool = False,
max_shard_size: int = 100_000,
custom_load_fn: Callable | None = None,
column_mapping: dict[str, str] | None = None,
) -> None:
"""Initialize SpectrumDataFrame.
Args:
df (pl.DataFrame | None): In-memory polars DataFrame with mass spectra data.
file_paths (str | list[str] | None): Path(s) to the input data files.
custom_load_fn (Callable | None): Custom function for loading data files.
is_annotated (bool): Whether the dataset is annotated.
has_predictions (bool): Whether predictions are present in the dataset.
is_lazy (bool): Whether to use lazy loading mode.
shuffle (bool): Whether to shuffle the dataset.
max_shard_size (int): Maximum size of data shards for chunking large datasets.
Raises:
ValueError: If neither `df` nor `file_paths` is specified, or both are given.
FileNotFoundError: If no files are found matching the given `file_paths`.
"""
self._is_annotated: bool = is_annotated
self._has_predictions: bool = has_predictions # if we have outputs/predictions
self._is_lazy: bool = is_lazy # or streaming
self._shuffle: bool = shuffle
self._max_shard_size = max_shard_size
self._custom_load_fn = custom_load_fn
self.executor = None
self._temp_directory = None
if df is None and file_paths is None:
raise ValueError("Must specify either df or file_paths, both are None.")
# native refers to data being stored as a list of parquet files.
self._is_native = file_paths is not None
if df is not None and self._is_native:
raise ValueError("Must specify either df or file_paths, not both.")
if self._is_native:
# Get all file paths
self._file_paths = self._convert_file_paths(
cast(str | list[str], file_paths)
)
if len(self._file_paths) == 0:
raise FileNotFoundError(f"No files matching '{file_paths}' were found.")
# If any of the files are not .parquet, create a tempdir with the converted files.
if not all([fp.endswith(".parquet") for fp in self._file_paths]):
# If lazy make tempdir, if not convert to non-native and load all contents into df
# Only iterate over non-parquet files
df_iterator = SpectrumDataFrame.get_data_shards(
self._file_paths,
max_shard_size=self._max_shard_size,
custom_load_fn=custom_load_fn,
column_mapping=column_mapping,
)
if self._is_lazy:
self._temp_directory = tempfile.mkdtemp()
new_file_paths = [
fp for fp in self._file_paths if fp.endswith(".parquet")
]
for temp_df in df_iterator:
# TODO: better way to generate id than hash?
temp_parquet_path = os.path.join(
self._temp_directory, f"temp_{uuid.uuid4().hex}.parquet"
)
temp_df.write_parquet(temp_parquet_path)
new_file_paths.append(temp_parquet_path)
self._file_paths = new_file_paths
else:
self.df = pl.concat(
[
SpectrumDataFrame._cast_columns(temp_df)
for temp_df in df_iterator
]
)
# Native is disabled if not lazy
self._is_native = False
self._file_paths = []
if self._file_paths is not None:
self._filter_series_per_file: dict[str, pl.Series] = {
fp: pl.Series(
np.full(pl.scan_parquet(fp).collect().height, True, dtype=bool)
)
for fp in self._file_paths
}
else:
self.df = df
# Check all columns
self._check_type_spec()
# Shuffled file handling, uses a two-step shuffle to optimise efficiency
self._current_index_in_file = (
0 # index in the current file, used in shuffle mode
)
self._next_file_index = 0 # index of the next file to be loaded in _file_paths
self._current_file: str | None = None # filename of the current file
self._current_file_len = 0 # length of the current file
self._current_file_data: pl.DataFrame | None = (
None # loaded data of the current file
)
self._current_file_position = 0 # starting index of the current file, used to
if self._shuffle:
if self._is_native:
self._shuffle_file_order()
else:
self.df = SpectrumDataFrame._shuffle_df(self.df)
elif self._is_native:
# Sort files alphabetically
# TODO: Do we want this? Keeps consistent when loading files across devices
self._file_paths.sort()
self._update_file_indices()
if self._is_lazy:
# When lazy loading, use async loaders to keep next file ready at all times.
self.executor = ThreadPoolExecutor(max_workers=1)
self.loop = asyncio.get_event_loop()
self._next_file: str | None = None # Future file name
self._next_file_future: pl.DataFrame | None = None # Future file data
self._preload_task: asyncio.Task | None = None
@staticmethod
def _shuffle_df(df: pl.DataFrame) -> pl.DataFrame:
"""Shuffle the rows of the given DataFrame."""
shuffled_indices = np.random.permutation(len(df))
return df[shuffled_indices]
# return df.with_row_count("row_nr").select(pl.all().shuffle())
@staticmethod
def _sanitise_peptide(peptide: str) -> str:
"""Sanitise peptide sequence."""
# Some datasets save sequence wrapped with _ or .
if peptide[0] == "_":
peptide = peptide[1:-1]
if peptide[0] == ".":
peptide = peptide[1:-1]
return peptide
@staticmethod
def _cast_columns(df: pl.DataFrame) -> pl.DataFrame:
"""Cast the columns of the DataFrame to the appropriate data types based on MS_TYPES."""
return df.with_columns(
[
pl.col(column.value).cast(dtype)
for column, dtype in MS_TYPES.items()
if column.value in df.columns
]
)
@staticmethod
def _convert_file_paths(file_paths: str | list[str]) -> list[str]:
"""Convert a string or list of file paths to a list of file paths.
Args:
file_paths (str | list[str]): File path or list of file paths.
Returns:
list[str]: A list of resolved file paths.
Raises:
ValueError: If input is a directory or not a valid file path.
"""
if isinstance(file_paths, str):
if os.path.isdir(file_paths):
raise ValueError(
"Input must be a string (filepath or glob) or a list of file paths. Found directory."
)
if "*" in file_paths or "?" in file_paths or "[" in file_paths:
# Glob notation: path/to/data/*.parquet
return glob.glob(file_paths)
else:
# Single file
return [file_paths]
elif not isinstance(file_paths, list):
ValueError(
"Input must be a string (filepath or glob) or a list of file paths."
)
return file_paths
# flake8: noqa: CR001
@staticmethod
def get_data_shards(
file_paths: list[str],
custom_load_fn: Callable | None = None,
column_mapping: dict[str, str] | None = None,
max_shard_size: int = 100_000,
add_index_cols: bool = True,
) -> Iterator[pl.DataFrame]:
"""Load data files into DataFrames one at a time to save memory.
Args:
file_paths (list[str]): List of file paths to be loaded.
custom_load_fn (Callable | None): Custom function to load the files.
max_shard_size (int): Maximum size of data shards.
add_index_cols (bool): Whether to add special indexing columns.
Yields:
Iterator[pl.DataFrame]: DataFrames containing mass spectra data.
"""
column_mapping = column_mapping or {}
current_shard = None
for fp in file_paths:
if fp.endswith(".parquet"):
continue
if custom_load_fn is not None:
df = custom_load_fn(fp)
else:
df = SpectrumDataFrame._df_from_any(fp)
if df is None:
logger.info(f"Skipping {fp}")
continue
# Add special columns for indexing
if add_index_cols:
exp_name = Path(fp).stem
df = df.with_columns(
pl.lit(exp_name).alias("experiment_name").cast(pl.Utf8)
)
if "scan_number" in df.columns:
df = df.with_columns(
(
pl.col("experiment_name")
+ ":"
+ pl.col("scan_number").cast(pl.Utf8)
).alias("spectrum_id")
)
df = df.rename({k: v for k, v in column_mapping.items() if k in df.columns})
# If df > shard_size, split it up first
while len(df) > max_shard_size:
yield df[:max_shard_size]
df = df[max_shard_size:]
# Assumes df < shard_size
if current_shard is None:
current_shard = df
elif len(current_shard) + len(df) < max_shard_size:
current_shard = pl.concat([current_shard, df])
else:
yield pl.concat(
[current_shard, df[: (max_shard_size - len(current_shard))]]
)
current_shard = df[(max_shard_size - len(current_shard)) :]
yield current_shard
def filter_rows(self, filter_fn: Callable) -> None:
"""Apply a filter function to rows of the DataFrame.
Args:
filter_fn (Callable): Function used to filter rows.
"""
if self._is_native:
for fp in self._file_paths:
df = pl.scan_parquet(fp).collect()
new_filter = df.select(
[
pl.struct(df.columns)
.map_elements(filter_fn, return_dtype=bool)
.alias("result"),
]
)["result"]
self._filter_series_per_file[fp] &= new_filter
if self._current_file is not None:
self._current_file_data = self._load_parquet_data(self._current_file)
if not self._shuffle:
self._update_file_indices()
else:
new_filter = self.df.select(
[
pl.struct(self.df.columns)
.map_elements(filter_fn, return_dtype=bool)
.alias("result"),
]
)["result"]
self.df = self.df.filter(new_filter)
def reset_filter(self) -> None:
"""Reset the filters applied to the DataFrame."""
if not self._is_native:
raise NotImplementedError(
"Filter reset is not supported in non-native mode."
)
self._filter_series_per_file = {
fp: pl.Series(
np.full(pl.scan_parquet(fp).collect().height, True, dtype=bool)
)
for fp in self._file_paths
}
if self._current_file is not None:
self._current_file_data = self._load_parquet_data(self._current_file)
if not self._shuffle:
self._update_file_indices()
def _update_file_indices(self) -> None:
"""Update mapping from index to file in native non-shuffle mode."""
if self._shuffle:
raise ValueError("Cannot use file indexing in shuffle mode.")
self._index_to_file_index = pl.concat(
[
pl.Series(np.full(self._filter_series_per_file[fp].sum(), i, dtype=int))
for i, fp in enumerate(self._file_paths)
]
)
cumulative_position = 0
self._file_begin_index: dict[str, int] = {}
for fp in self._file_paths:
self._file_begin_index[fp] = cumulative_position
height = self._filter_series_per_file[fp].sum()
cumulative_position += height
def _shuffle_file_order(self) -> None:
"""Shuffle the order of files in native mode."""
random.shuffle(self._file_paths)
def _load_parquet_data(self, file_path: str) -> pl.DataFrame:
"""Load data from a parquet file and apply the filters."""
return (
pl.scan_parquet(file_path)
.filter(self._filter_series_per_file[file_path])
.collect()
)
def _load_next_file(self) -> None:
"""Load the next file in sequence for lazy loading."""
# This function is exclusive to native mode i.e. always lazy
self._current_file = self._file_paths[self._next_file_index]
# Scan file, filter, and collect
if self._current_file == self._next_file and self._next_file_future is not None:
self._current_file_data = self._next_file_future
else:
self._current_file_data = self._load_parquet_data(self._current_file)
# Update next file loading
if self._shuffle:
self._current_file_data = SpectrumDataFrame._shuffle_df(
self._current_file_data
) # Shuffle rows
self._current_file_len = self._current_file_data.shape[0]
# Update future
if len(self._file_paths) > 0:
future_file_index = self._next_file_index + 1
if future_file_index >= len(self._file_paths):
if self._shuffle:
self._shuffle_file_order()
future_file_index = 0
self._next_file = self._file_paths[future_file_index]
self._next_file_future = None
self._start_preload_next(self._next_file)
def _start_preload_next(self, file_path: str) -> None:
"""Start preloading the next file asynchronously."""
if self._preload_task is None or self._preload_task.done():
self._preload_task = self.loop.create_task(
self._preload_next_file(file_path)
)
async def _preload_next_file(self, file_path: str) -> None:
"""Asynchronously preload the next file."""
try:
self._next_file_future = await self.loop.run_in_executor(
self.executor, self._load_parquet_data, file_path
)
except Exception as e:
print(f"Error preloading file {file_path}: {e}")
self._next_file_future = None
def __len__(self) -> int: # noqa: CCE001
"""Returns the total number of rows in the SpectrumDataFrame.
Returns:
int: Number of rows in the DataFrame.
"""
if self._is_native:
return sum([v.sum() for v in self._filter_series_per_file.values()])
return int(self.df.shape[0])
def __getitem__(self, idx: int) -> dict[str, Any]:
"""Return the item at the specified index.
Args:
idx (int): Index of the item to retrieve.
Returns:
dict[str, Any]: Dictionary containing the data from the specified row.
Raises:
IndexError: If the DataFrame is empty or the index is out of range.
"""
if len(self) == 0:
raise IndexError("Attempt to index empty SpectrumDataFrame")
# In shuffle, idx is ignored.
if self._is_native:
if self._shuffle:
# If no file is loaded or we have finished the current file
if (
self._current_file_data is None
or self._current_index_in_file >= self._current_file_len
):
self._current_index_in_file = 0
self._load_next_file()
self._next_file_index += 1
if self._next_file_index >= len(self._file_paths):
self._next_file_index = 0
# for mypy
assert self._current_file_data is not None
row = self._current_file_data[self._current_index_in_file]
self._current_index_in_file += 1
else:
# In native mode without shuffle, idx is used.
selected_file_index = self._index_to_file_index[idx]
# If the index is outside the currently loaded file, load the new file
if (
self._current_file_data is None
or self._file_paths[selected_file_index] != self._current_file
):
self._next_file_index = selected_file_index
self._load_next_file()
# for mypy
assert self._current_file is not None
assert self._current_file_data is not None
# Find the relative index within the current file
file_begin_index = self._file_begin_index[self._current_file]
index_in_file = idx
if file_begin_index > 0:
index_in_file = idx % self._file_begin_index[self._current_file]
row = self._current_file_data[index_in_file]
else:
# We're in non-native non-lazy mode
if self._shuffle:
# Shuffle if we have passed through all entries
if self._current_index_in_file >= self.df.height:
self.df = SpectrumDataFrame._shuffle_df(self.df)
self._current_index_in_file = 0
row = self.df[self._current_index_in_file]
self._current_index_in_file += 1
else:
row = self.df[idx]
row = SpectrumDataFrame._cast_columns(row)
# Squeeze all entries
row_dict: dict[str, Any] = {
k: v[0] for k, v in row.to_dict(as_series=False).items()
}
if self.is_annotated:
row_dict[ANNOTATED_COLUMN] = SpectrumDataFrame._sanitise_peptide(
row_dict[ANNOTATED_COLUMN]
)
return row_dict
# def iterable(self, df: pl.DataFrame) -> None:
# """Iterates dataset. Supports streaming?"""
# pass
@property
def is_annotated(self) -> bool:
"""Check if the dataset is annotated.
Returns:
bool: True if annotated, False otherwise.
"""
return self._is_annotated
@property
def has_predictions(self) -> bool:
"""Check if the dataset contains predictions.
Returns:
bool: True if predictions are present, False otherwise.
"""
return self._has_predictions
@property
def is_lazy(self) -> bool:
"""Check if lazy loading mode is enabled.
Returns:
bool: True if lazy loading is enabled, False otherwise.
"""
return self._is_lazy
def save(
self,
target: str,
partition: str | None = None,
name: str | None = None,
max_shard_size: int | None = None,
) -> None:
"""Save the dataset in parquet format with the option to partition and shard the data.
Args:
target (str): Directory to save the dataset.
partition (str | None): Partition name to be included in the file names.
name (str | None): Dataset name to be included in the file names.
max_shard_size (int | None): Maximum size of the data shards.
"""
max_shard_size = max_shard_size or self._max_shard_size
partition = partition or "default"
name = name or "ms"
total_num_files = (len(self) // max_shard_size) + 1
shards = self._to_parquet_chunks(target, max_shard_size)
os.makedirs(target, exist_ok=True)
for i, shard in enumerate(shards):
filename = (
f"dataset-{name}-{partition}-{i:04d}-{total_num_files:04d}.parquet"
)
shard.write_parquet(os.path.join(target, filename))
def _to_parquet_chunks(
self, target: str, max_shard_size: int = 1_000_000
) -> Iterator[pl.DataFrame]:
"""Generate DataFrame chunks to be saved as parquet files.
Args:
target (str): Directory to save the parquet files.
max_shard_size (int): Maximum size of the data shards.
Yields:
Iterator[pl.DataFrame]: Chunks of DataFrames to be saved.
"""
if self._is_native:
current_shard = None
for fp in self._file_paths:
# Load each file with filtering
df = self._load_parquet_data(fp)
while len(df) > max_shard_size:
yield df[:max_shard_size]
df = df[max_shard_size:]
# Assumes df < shard_size
if current_shard is None:
current_shard = df
elif len(current_shard) + len(df) < max_shard_size:
current_shard = pl.concat([current_shard, df])
else:
yield pl.concat(
[current_shard, df[: (max_shard_size - len(current_shard))]]
)
current_shard = df[(max_shard_size - len(current_shard)) :]
yield current_shard
else:
df = self.df
while len(df) > max_shard_size:
yield df[:max_shard_size]
df = df[max_shard_size:]
yield df
def write_csv(self, target: str) -> None:
"""Write the dataset to a CSV file.
Args:
target (str): Path to the output CSV file.
"""
self.to_pandas().to_csv(target, index=False)
def write_ipc(self, target: str) -> None:
"""Write the dataset to a Polars ipc file.
Args:
target (str): Path to the output ipc file.
"""
df = self.to_polars()
if self._is_native:
df = df.collect().rechunk()
df.write_ipc(target)
def write_mgf(self, target: str, export_style: str | None = None) -> None:
"""Write the dataset to an MGF file using Matchms format.
Args:
target (str): Path to the output MGF file.
export_style (str | None): Style of export to be used (optional).
"""
export_style = export_style or "matchms"
spectra = self.to_matchms()
# Check if the file exists and delete it if it does
if os.path.exists(target):
try:
os.remove(target)
except OSError as e:
logger.warn(f"Error deleting existing file '{target}': {e}")
return # Exit the method if we can't delete the file
save_as_mgf(spectra, target, export_style=export_style)
def write_pointnovo(self, spectrum_source: str, feature_target: str) -> None:
"""Write the dataset in PointNovo format.
Args:
spectrum_source (str): Source of the spectrum data.
feature_target (str): Target for the features.
"""
raise NotImplementedError()
def write_mzxml(self, target: str) -> None:
"""Write the dataset in mzXML format.
Args:
target (str): Path to the output mzXML file.
"""
raise NotImplementedError()
def write_mzml(self, target: str) -> None:
"""Write the dataset in mzML format.
Args:
target (str): Path to the output mzML file.
"""
raise NotImplementedError()
def to_pandas(self) -> pd.DataFrame:
"""Convert the dataset to a pandas DataFrame.
Warning:
This function loads the entire dataset into memory. For large datasets,
this may consume a significant amount of RAM.
Returns:
pd.DataFrame: The dataset in pandas DataFrame format.
"""
return self.to_polars(return_lazy=False).to_pandas()
def to_polars(self, return_lazy: bool = True) -> pl.DataFrame | pl.LazyFrame:
"""Convert the dataset to a polars DataFrame.
Args:
return_lazy (bool): Return LazyFrame when in lazy mode. Defaults to True.
Returns:
pl.DataFrame | pl.LazyFrame: The dataset in polars DataFrame format
"""
if self._is_native:
dfs = []
for fp in self._file_paths:
dfs.append(pl.scan_parquet(fp).filter(self._filter_series_per_file[fp]))
df = pl.concat(dfs)
if return_lazy:
return df
return df.collect().rechunk()
return self.df
def to_matchms(self) -> list[Spectrum]:
"""Convert the dataset to a list of Matchms spectrum objects.
Warning:
This function loads the entire dataset into memory. For large datasets,
this may consume a significant amount of RAM.
Returns:
list[Spectrum]: List of Matchms spectrum objects.
"""
df = self.to_polars(return_lazy=False)
return SpectrumDataFrame._df_to_matchms(df)
def export_predictions(self, target: str, export_type: str | Enum) -> None:
"""Export the predictions from the dataset.
Args:
target (str): Target path to save the predictions.
export_type (str | Enum): Type of export format.
"""
if isinstance(export_type, str):
pass
raise NotImplementedError()
@classmethod
def load(
cls,
source: str | Path,
source_type: str = "default",
is_annotated: bool = False,
shuffle: bool = False,
name: str | None = None,
partition: str | None = None,
custom_load: Callable | None = None,
column_mapping: dict[str, str] | None = None,
lazy: bool = True,
max_shard_size: int = 1_000_000,
) -> "SpectrumDataFrame":
"""Load a SpectrumDataFrame from a source.
Args:
source (str | Path): Path to the source file or directory.
source_type (str): Type of the source (default is "default").
is_annotated (bool): Whether the dataset is annotated.
shuffle (bool): Whether to shuffle the dataset.
name (str | None): Name of the dataset.
partition (str | None): Partition name of the dataset.
lazy (bool): Whether to use lazy loading mode.
max_shard_size (int): Maximum size of data shards.
Returns:
SpectrumDataFrame: The loaded SpectrumDataFrame.
"""
partition = partition or "default"
name = name or "ms"
# Native mode
if (
isinstance(source, str)
and os.path.isdir(source)
and source_type == "default"
):
# /path/to/folder/dataset-name-train-0000-of-0001.parquet
source = os.path.join(source, f"dataset-{name}-{partition}-*-*.parquet")
return cls(
file_paths=cast(str, source), # We don't support Path directly
is_lazy=lazy,
custom_load_fn=custom_load,
column_mapping=column_mapping,
max_shard_size=max_shard_size,
shuffle=shuffle,
is_annotated=is_annotated,
)
@staticmethod
def _df_from_any(source: str, source_type: str | None = None) -> pl.DataFrame:
"""Load a DataFrame from various source formats (MGF, IPC, etc.).
Args:
source (str): Path to the source file.
source_type (str | None): Type of the source file.
Returns:
pl.DataFrame: The loaded DataFrame.
"""
if source_type is None:
# Try to infer
source_type = source.split(".")[-1].lower()
match source_type:
case "ipc":
return SpectrumDataFrame._df_from_ipc(source)
case "mgf":
return SpectrumDataFrame._df_from_mgf(source)
case "mzml":
return SpectrumDataFrame._df_from_mzml(source)
case "mzxml":
return SpectrumDataFrame._df_from_mzxml(source)
case "_":
logger.info(f"Unknown filetype {source_type} of {source}")
return None
@classmethod
def load_mgf(cls, source: str) -> "SpectrumDataFrame":
"""Load a SpectrumDataFrame from an MGF file.
Args:
source (str): Path to the MGF file.
Returns:
SpectrumDataFrame: The loaded SpectrumDataFrame.
"""
spectra = list(load_from_mgf(source))
return cls.from_matchms(spectra)
@staticmethod
def _df_from_mgf(source: str) -> pl.DataFrame:
"""Load a polars DataFrame from an MGF file.
Args:
source (str): Path to the MGF file.
Returns:
pl.DataFrame: The loaded polars DataFrame.
"""
spectra = list(load_from_mgf(source))
return SpectrumDataFrame._df_from_matchms(spectra)
@classmethod
def load_pointnovo(
cls, spectrum_source: str, feature_source: str
) -> "SpectrumDataFrame":
"""Load a SpectrumDataFrame from PointNovo format.
Args:
spectrum_source (str): Source of spectrum data.
feature_source (str): Source of feature data.
"""
raise NotImplementedError()
@classmethod
def load_csv(
cls,
source: str,
column_mapping: dict[str, str] | None = None,
lazy: bool = False,
annotated: bool = False,
) -> "SpectrumDataFrame":
"""Load a SpectrumDataFrame from a CSV file.
Args:
source (str): Path to the CSV file.
column_mapping (dict[str, str] | None): Mapping of columns to rename.
lazy (bool): Whether to use lazy loading mode.
annotated (bool): Whether the dataset is annotated.
Returns:
SpectrumDataFrame: The loaded SpectrumDataFrame.
"""
df = pl.read_csv(source)
if column_mapping is not None:
df = df.rename({k: v for k, v in column_mapping.items() if k in df.columns})
return cls(df, is_annotated=annotated, is_lazy=lazy)
@classmethod
def load_mzxml(cls, source: str) -> "SpectrumDataFrame":
"""Load a SpectrumDataFrame from an mzXML file.
Args:
source (str): Path to the mzXML file.
Returns:
SpectrumDataFrame: The loaded SpectrumDataFrame.
"""
# spectra = list(load_from_mzxml(source))
# return cls.from_matchms(spectra)
df = SpectrumDataFrame._df_from_dict(read_mzxml(source))
return cls.from_polars(df)
@staticmethod
def _df_from_mzxml(source: str) -> pl.DataFrame:
"""Load a polars DataFrame from an MGF file.
Args:
source (str): Path to the MGF file.
Returns:
pl.DataFrame: The loaded polars DataFrame.
"""
# spectra = list(load_from_mzxml(source))
# return SpectrumDataFrame._df_from_matchms(spectra)
return SpectrumDataFrame._df_from_dict(read_mzxml(source))
@classmethod
def load_mzml(cls, source: str) -> "SpectrumDataFrame":
"""Load a SpectrumDataFrame from an mzML file.
Args:
source (str): Path to the mzML file.
Returns:
SpectrumDataFrame: The loaded SpectrumDataFrame.
"""
# spectra = list(load_from_mzml(source))
# return cls.from_matchms(spectra)
df = SpectrumDataFrame._df_from_dict(read_mzml(source))
return cls.from_polars(df)
@staticmethod
def _df_from_mzml(source: str) -> pl.DataFrame:
"""Load a polars DataFrame from an MGF file.
Args:
source (str): Path to the MGF file.
Returns:
pl.DataFrame: The loaded polars DataFrame.
"""
# spectra = list(load_from_mzml(source))
# return SpectrumDataFrame._df_from_matchms(spectra)
return SpectrumDataFrame._df_from_dict(read_mzml(source))
@classmethod
def from_huggingface(
cls,
dataset: str | Dataset,
shuffle: bool = False,
is_annotated: bool = False,
**kwargs: Any,
) -> "SpectrumDataFrame":
"""Load a SpectrumDataFrame from HuggingFace directory or Dataset instance.
Warning:
This function loads the entire dataset into memory. For large datasets,
this may consume a significant amount of RAM.
Args:
dataset (str | Dataset): Path to HuggingFace or Dataset instance.
Returns:
SpectrumDataFrame: The loaded SpectrumDataFrame.
"""
if isinstance(dataset, str):
dataset = load_dataset(dataset, **kwargs)
# TODO: Explore dataset.to_pandas(batched=True)
return cls.from_pandas(
dataset.to_pandas(), shuffle=shuffle, is_annotated=is_annotated
)
@classmethod
def from_pandas(
cls, df: pd.DataFrame, shuffle: bool = False, is_annotated: bool = False
) -> "SpectrumDataFrame":
"""Create a SpectrumDataFrame from a pandas DataFrame.
Args:
df (pd.DataFrame): The pandas DataFrame.
Returns:
SpectrumDataFrame: The resulting SpectrumDataFrame.
"""
df = pl.from_pandas(df)
return cls.from_polars(df, shuffle=shuffle, is_annotated=is_annotated)