You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
python benchmarks/dynamo/torchbench.py --accuracy --float32 -d xpu -n10 --training --only vision_maskrcnn --backend=inductor
xpu train vision_maskrcnn
Traceback (most recent call last):
File "/home/sdp/actions-runner/_work/torch-xpu-ops/pytorch/benchmarks/dynamo/common.py", line 2751, in validate_model
self.model_iter_fn(model, example_inputs)
File "/home/sdp/actions-runner/_work/torch-xpu-ops/pytorch/benchmarks/dynamo/torchbench.py", line 462, in forward_and_backward_pass
self.grad_scaler.scale(loss).backward()
File "/home/sdp/miniforge3/envs/e2e_ci/lib/python3.10/site-packages/torch/_tensor.py", line 648, in backward
torch.autograd.backward(
File "/home/sdp/miniforge3/envs/e2e_ci/lib/python3.10/site-packages/torch/autograd/__init__.py", line 347, in backward
_engine_run_backward(
File "/home/sdp/miniforge3/envs/e2e_ci/lib/python3.10/site-packages/torch/autograd/graph.py", line 823, in _engine_run_backward
return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
RuntimeError: roi_align_backward_kernel_xpu does not have a deterministic implementation, but you set 'torch.use_deterministic_algorithms(True)'. You can turn off determinism just for this operation, or you can use the 'warn_only=True' option, if that's acceptable for your application. You can also file an issue at https://github.com/pytorch/pytorch/issues to help us prioritize adding deterministic support for this operation.
The above exception was the direct cause of the following exception:
Traceback (most recent call last):
File "/home/sdp/actions-runner/_work/torch-xpu-ops/pytorch/benchmarks/dynamo/common.py", line 4886, in run
) = runner.load_model(
File "/home/sdp/actions-runner/_work/torch-xpu-ops/pytorch/benchmarks/dynamo/torchbench.py", line 372, in load_model
self.validate_model(model, example_inputs)
File "/home/sdp/actions-runner/_work/torch-xpu-ops/pytorch/benchmarks/dynamo/common.py", line 2753, in validate_model
raise RuntimeError("Eager run failed") from e
RuntimeError: Eager run failed
eager_fail_to_run
🐛 Describe the bug
Versions
Envirnoments:
Device: PVC 1100
torch-xpu-ops: 18bcd9a
python: 3.10
TRITON_COMMIT_ID: e98b6fcb8df5b44eb0d0addb6767c573d37ba024
TORCH_COMMIT_ID: b9fbd65dfd5e703bacbc6c25258d1215108b4faf
TORCHBENCH_COMMIT_ID: 766a5e3a189384659fd35a68c3b17b88c761aaac
TORCHVISION_COMMIT_ID: d23a6e1664d20707c11781299611436e1f0c104f
TORCHAUDIO_COMMIT_ID: b6d4675c7aedc53ba04f3f55786aac1de32be6b4
DRIVER_VERSION: 1.23.10.49.231129.50 (803.61)
KERNEL_VERSION: 5.15.0-73-generic #80-Ubuntu SMP Mon May 15 15:18:26 UTC 2023
BUNDLE_VERSION: 2025.0.1.20241113 (DL-Essential 2025.0.1)
OS_PRETTY_NAME: Ubuntu 22.04.2 LTS
GCC_VERSION: 11
The text was updated successfully, but these errors were encountered: