-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathrerank.py
292 lines (243 loc) · 11.2 KB
/
rerank.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
###########################################################################################################################
# Re-Ranker
###########################################################################################################################
# Will also do speed test in this script
import pickle
import logging
import argparse
import os
import torch
import json
import collections
import time
import tqdm
import itertools
import numpy as np
from horovod import torch as hvd
from transformers.tokenization_bert import BertTokenizer
from uniter_model.model.itm import UniterForImageTextRetrieval
from uniter_model.data import ImageLmdbGroup
from uniter_model.data.loader import move_to_cuda
from dvl.options import default_params, add_itm_params, parse_with_config, add_logging_params, print_args, add_kd_params
from dvl.models.bi_encoder import BiEncoder, setup_for_distributed_mode, load_biencoder_checkpoint
from dvl.utils import num_of_parameters
from dvl.trainer import load_dataset, eval_model_on_dataloader, build_dataloader, get_indexer
from dvl.data.itm import itm_fast_collate
from dvl.const import IMG_DIM
from dvl.data.itm import pad_tensors
SEARCH_MODE = 'approx'
logger = logging.getLogger()
logger.setLevel(logging.INFO)
if (logger.hasHandlers()):
logger.handlers.clear()
console = logging.StreamHandler()
logger.addHandler(console)
parser = argparse.ArgumentParser()
default_params(parser)
add_itm_params(parser)
add_logging_params(parser)
add_kd_params(parser)
data_name, Full = 'coco', False
if data_name == 'flickr':
cmd = '--config ./config/flickr30k_eval_config.json --biencoder_checkpoint /good_models/flickr_two-stream-add/biencoder.last.pt ' \
'--teacher_checkpoint /pretrain/uniter_teacher_flickr.pt'
if Full:
txt_dbs = [
"/db/itm_flickr30k_train_base-cased.db",
"/db/itm_flickr30k_val_base-cased.db",
"/db/itm_flickr30k_test_base-cased.db",
]
img_dbs = [
"/img/flickr30k/",
"/img/flickr30k/",
"/img/flickr30k/",
]
else:
txt_db, img_db = '/db/itm_flickr30k_test_base-cased.db', '/img/flickr30k/'
else:
cmd = '--config ./config/coco_eval_config.json --biencoder_checkpoint /good_models/coco_two-stream-add/biencoder.last.pt ' \
'--teacher_checkpoint /pretrain/uniter_teacher_coco.pt'
if Full:
txt_dbs = [
"/db/itm_coco_train_base-cased.db",
"/db/itm_coco_restval_base-cased.db",
"/db/itm_coco_val_base-cased.db",
"/db/itm_coco_test_base-cased.db"
]
img_dbs = [
"/img/coco_train2014/",
"/img/coco_val2014",
"/img/coco_val2014/",
"/img/coco_val2014/"
]
else:
txt_db, img_db = '/db/itm_coco_test_base-cased.db', '/img/coco_val2014'
args = parse_with_config(parser, cmd.split())
args.tokenizer = BertTokenizer.from_pretrained(args.txt_model_config)
# options safe guard
if args.conf_th == -1:
assert args.max_bb + args.max_txt_len + 2 <= 512
else:
assert args.num_bb + args.max_txt_len + 2 <= 512
# assert (args.hard_neg_size <= args.hard_neg_pool_size <= args.inf_minibatch_size)
if args.steps_per_hard_neg != -1:
assert args.hard_neg_size > 0
hvd.init()
n_gpu = hvd.size()
args.device = torch.device("cuda", hvd.local_rank())
args.local_rank = hvd.rank()
args.n_gpu = hvd.size()
args.inf_minibatch_size = 400
args.vector_size = 768
args.img_meta = None
args.num_tops = 100
args.valid_batch_size = 256
torch.cuda.set_device(hvd.local_rank())
print_args(args)
bi_encoder = BiEncoder(args, args.fix_img_encoder, args.fix_txt_encoder, project_dim=args.project_dim)
load_biencoder_checkpoint(bi_encoder, args.biencoder_checkpoint)
print(f'total #params in img model = {num_of_parameters(bi_encoder.img_model)}, '
f'in txt model = {num_of_parameters(bi_encoder.txt_model)}')
img_model, txt_model = bi_encoder.img_model, bi_encoder.txt_model
img_model.to(args.device)
txt_model.to(args.device)
img_model, _ = setup_for_distributed_mode(img_model, None, args.device, args.n_gpu, -1, args.fp16, args.fp16_opt_level)
img_model.eval()
txt_model, _ = setup_for_distributed_mode(txt_model, None, args.device, args.n_gpu, -1, args.fp16, args.fp16_opt_level)
txt_model.eval()
# Load Data
all_img_dbs = ImageLmdbGroup(args.conf_th, args.max_bb, args.min_bb, args.num_bb, args.compressed_db)
if Full:
dataset = load_dataset(all_img_dbs, txt_dbs, img_dbs, args, True)
for d in dataset.datasets:
d.new_epoch()
dataloader = build_dataloader(dataset, itm_fast_collate, False, args)
img2txt = dict(collections.ChainMap(*[json.load(open(os.path.join(db_folder, 'img2txts.json'))) for db_folder in txt_dbs]))
else:
dataset = load_dataset(all_img_dbs, txt_db, img_db, args, is_train=False)
dataset.new_epoch()
dataloader = build_dataloader(dataset, itm_fast_collate, False, args)
img2txt = dict(collections.ChainMap(*[json.load(open(os.path.join(db_folder, 'img2txts.json'))) for db_folder in [txt_db]]))
logger.info(f'dataset len = {len(dataset)}, dataloader len = {len(dataloader)}')
txt2img = dict(itertools.chain(*[[(v, k) for v in vals] for k, vals in img2txt.items()]))
# build indexer, cache data
# args.hnsw_index = True
_, _, (indexer_img, indexer_txt), (recall_img, recall_txt), _ = eval_model_on_dataloader(bi_encoder, dataloader, args,
img2txt=img2txt, no_eval=True)
###########################################################################################################################
# Re-Ranker
###########################################################################################################################
txt_db_test, img_db_test = args.test_txt_db, args.test_img_db
dataset_test = load_dataset(all_img_dbs, txt_db_test, img_db_test, args, is_train=False)
dataset_test.new_epoch()
dataloader_test = build_dataloader(dataset_test, itm_fast_collate, False, args, batch_size=400)
feats_dict = {'imgs': collections.defaultdict(dict), 'txts': collections.defaultdict(dict)}
recall_img2 = {1: 0, 5: 0, 10: 0, 20: 0, 50: 0, 100: 0}
recall_txt2 = {1: 0, 5: 0, 10: 0, 20: 0, 50: 0, 100: 0}
error_msg = []
total_len = 0
ranking_res_img = dict()
ranking_res_txt = dict()
sanity = 0
for i, batch in enumerate(tqdm.tqdm(dataloader_test)):
batch['txts_fname'] = batch['txt_index']
batch['imgs_fname'] = batch['img_fname']
# record all features
for sets in ['imgs', 'txts']:
for k in batch[sets]:
for idx, img_name in enumerate(batch[f'{sets}_fname']):
try:
feats_dict[sets][img_name][k] = batch[sets][k][idx]
except IndexError:
assert len(batch[sets][k]) == 1, 'should be same for whole batch'
feats_dict[sets][img_name][k] = batch[sets][k][0]
except TypeError:
assert batch[sets][k] is None, f'feat for {k} is None'
feats_dict[sets][img_name][k] = None
# batch.pop('imgs', None)
batch.pop('caps', None)
# recrod time for inference and search only
with torch.no_grad():
txt_vec, img_vec, caps_vec = bi_encoder(batch)
res_img = [i[0] for i in indexer_img.search_knn(txt_vec.detach().cpu().numpy(), max(recall_img2.keys()))]
res_txt = [i[0] for i in indexer_txt.search_knn(img_vec.detach().cpu().numpy(), max(recall_txt2.keys()))]
total_len += len(res_img)
for r, txt_index in zip(res_img, batch['txt_index']):
ranking_res_img[txt_index] = r
for top in recall_img2:
recall_img2[top] += txt2img[txt_index] in r[:top]
for r, img_index in zip(res_txt, batch['img_fname']):
ranking_res_txt[img_index] = r
for top in recall_txt2:
recall_txt2[top] += any([txt_id in r[:top] for txt_id in img2txt[img_index]])
print('img retrieval results')
for top in recall_img2:
print(f'R@{top} =', recall_img2[top] / total_len, end="\t")
print()
print('txt retrieval results')
for top in recall_txt2:
print(f'R@{top} =', recall_txt2[top] / total_len, end="\t")
print()
if Full:
sufix = '_large'
# sufix = ''
with open(f'/pretrain/{data_name}_all{sufix}/ir.bin', 'rb') as f:
scores_ir = pickle.load(f)
txt_ids = list(scores_ir.keys())
with open(f'/pretrain/{data_name}_all{sufix}/tr.bin', 'rb') as f:
scores_tr = pickle.load(f)
img_ids = list(scores_tr.keys())
else:
with open('/pretrain/itm_flickr_large_result/results.bin', 'rb') as f:
scores_tuple = pickle.load(f)
# score_mat : num_txt * num_img
txt_ids, img_ids, scores_mat = scores_tuple[1], scores_tuple[2], scores_tuple[0]
txt_ids_mapping = {t:i for i, t in enumerate(txt_ids)}
imgs_ids_mapping ={t:i for i, t in enumerate(img_ids)}
# Re-ranker for OSCAR
if False:
with open('/pretrain/oscar_score.pkl', 'rb') as f:
scores_tuple = pickle.load(f)
# scores are img_id x txt_id
img_ids = list(scores_tuple.keys())
diff_ids = list(set(indexer_txt.index_id_to_db_id) - set(list(scores_tuple[img_ids[0]].keys())))
txt_ids = list(set(indexer_txt.index_id_to_db_id))
txt_ids_mapping, imgs_ids_mapping = {t:i for i, t in enumerate(txt_ids)}, {img:i for i, img in enumerate(img_ids)}
scores_mat = np.zeros((len(txt_ids), len(img_ids)))
for img_id in img_ids:
for txt_id in txt_ids:
if txt_id in diff_ids:
scores_mat[ txt_ids_mapping[txt_id] ][ imgs_ids_mapping[img_id] ] = 0.0
else:
scores_mat[ txt_ids_mapping[txt_id] ][ imgs_ids_mapping[img_id] ] = scores_tuple[img_id][txt_id]
# for image retrieval
for threshold in [10, 20, 50, 100]:
recall_rerank = {1: 0, 5: 0, 10: 0}
for txt_id in txt_ids:
if Full:
scores = torch.Tensor([scores_ir[txt_id].get(img_id, -1000) for img_id in ranking_res_img[txt_id][:threshold]])
else:
scores = torch.Tensor([scores_mat[txt_ids_mapping[txt_id]][imgs_ids_mapping[img_id]] for img_id in ranking_res_img[txt_id][:threshold]])
idx = scores.topk(10, 0)
uniter_ids = [ranking_res_img[txt_id][i.item()] for i in idx[1]]
for top in recall_rerank:
recall_rerank[top] += txt2img[txt_id] in uniter_ids[:top]
for top in recall_rerank:
print(threshold, f'R@{top} =', recall_rerank[top] / total_len, end="\t")
print()
# for text retrieval
for threshold in [10, 20, 50, 100]:
recall_rerank = {1: 0, 5: 0, 10: 0}
for img_id in img_ids:
if Full:
scores = torch.Tensor([scores_tr[img_id].get(txt_id, -1000) for txt_id in ranking_res_txt[img_id][:threshold]])
else:
scores = torch.Tensor([scores_mat[txt_ids_mapping[txt_id]][imgs_ids_mapping[img_id]] for txt_id in ranking_res_txt[img_id][:threshold]])
idx = scores.topk(10, 0)
uniter_ids = [ranking_res_txt[img_id][i.item()] for i in idx[1]]
for top in recall_rerank:
recall_rerank[top] += any([txt_id in uniter_ids[:top] for txt_id in img2txt[img_id]])
# recall_rerank[top] += txt2img[txt_id] in uniter_ids[:top]
for top in recall_rerank:
print(threshold, f'R@{top} =', recall_rerank[top] / len(img_ids), end="\t")
print()