-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathutils.py
254 lines (216 loc) · 9.11 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
""" utils.py
"""
import os
import torch
import numpy as np
import torchvision
import torchvision.transforms as transforms
import torchvision.utils as vutils
import time
import warnings
name_dataparallel = torch.nn.DataParallel.__name__
log10 = np.log(10)
def compute_psnr(x , label , max_diff):
assert max_diff in [255,1,2]
if max_diff == 255:
x = x.clamp( 0 , 255 )
elif max_diff == 1:
x = x.clamp( 0 , 1 )
elif max_diff == 2 :
x = x.clamp( -1 , 1 )
mse = (( x - label ) **2 ).mean()
return 10*torch.log( max_diff**2 / mse ) / log10
def lr_warmup(epoch, warmup_length):
if epoch < warmup_length:
p = max(0.0, float(epoch)) / float(warmup_length)
p = 1.0 - p
return np.exp(-p*p*5.0)
else:
return 1.0
def load_optimizer(optimizer , model , path , epoch = None ):
"""
return the epoch
"""
if type(model).__name__ == name_dataparallel:
model = model.module
if epoch is None:
for i in reversed( range(10000) ):
p = "{}/{}_epoch{}.pth".format( path,type(optimizer).__name__+'_'+type(model).__name__,i )
if os.path.exists( p ):
optimizer.load_state_dict( torch.load( p ) )
return i
else:
p = "{}/{}_epoch{}.pth".format( path,type(optimizer).__name__+'_'+type(model).__name__,epoch )
if os.path.exists( p ):
optimizer.load_state_dict( torch.load( p ) )
return epoch
else:
warnings.warn("resume optimizer not found at {}".format(p))
warnings.warn("resume model not found ")
return -1
def load_model(model,path ,epoch = None , strict= True):
"""
return the last epoch
"""
if type(model).__name__ == name_dataparallel:
model = model.module
if epoch is None:
for i in reversed( range(10000) ):
p = "{}/{}_epoch{}.pth".format( path,type(model).__name__,i )
if os.path.exists( p ):
model.load_state_dict( torch.load( p ) , strict = strict)
return i
else:
p = "{}/{}_epoch{}.pth".format( path,type(model).__name__,epoch )
if os.path.exists( p ):
model.load_state_dict( torch.load( p ) , strict = strict)
return epoch
else:
warnings.warn("resume model not found at {}".format(p))
warnings.warn("resume model not found ")
return -1
def set_requires_grad(module , b ):
for parm in module.parameters():
parm.requires_grad = b
def adjust_dyn_range(x, drange_in, drange_out):
if not drange_in == drange_out:
scale = float(drange_out[1]-drange_out[0])/float(drange_in[1]-drange_in[0])
bias = drange_out[0]-drange_in[0]*scale
x = x.mul(scale).add(bias)
return x
def resize(x, size):
transform = transforms.Compose([
transforms.ToPILImage(),
transforms.Scale(size),
transforms.ToTensor(),
])
return transform(x)
def make_image_grid(x, ngrid):
x = x.clone().cpu()
if pow(ngrid,2) < x.size(0):
grid = make_grid(x[:ngrid*ngrid], nrow=ngrid, padding=0, normalize=True, scale_each=False)
else:
grid = torch.FloatTensor(ngrid*ngrid, x.size(1), x.size(2), x.size(3)).fill_(1)
grid[:x.size(0)].copy_(x)
grid = make_grid(grid, nrow=ngrid, padding=0, normalize=True, scale_each=False)
return grid
def save_image_single(x, path, imsize=512):
from PIL import Image
grid = make_image_grid(x, 1)
ndarr = grid.mul(255).clamp(0, 255).byte().permute(1, 2, 0).numpy()
im = Image.fromarray(ndarr)
im = im.resize((imsize,imsize), Image.NEAREST)
im.save(path)
def save_image_grid(x, path, imsize=512, ngrid=4):
from PIL import Image
grid = make_image_grid(x, ngrid)
ndarr = grid.mul(255).clamp(0, 255).byte().permute(1, 2, 0).numpy()
im = Image.fromarray(ndarr)
im = im.resize((imsize,imsize), Image.NEAREST)
im.save(path)
def save_model(model,dirname,epoch):
if type(model).__name__ == name_dataparallel:
model = model.module
torch.save( model.state_dict() , '{}/{}_epoch{}.pth'.format(dirname,type(model).__name__,epoch ) )
def save_optimizer(optimizer,model,dirname,epoch):
if type(model).__name__ == name_dataparallel:
model = model.module
torch.save( optimizer.state_dict() , '{}/{}_epoch{}.pth'.format(dirname,type(optimizer).__name__ +'_' +type(model).__name__,epoch ) )
def make_summary(writer, key, value, step):
if hasattr(value, '__len__'):
for idx, img in enumerate(value):
summary = tf.Summary()
sio = BytesIO()
scipy.misc.toimage(img).save(sio, format='png')
image_summary = tf.Summary.Image(encoded_image_string=sio.getvalue())
summary.value.add(tag="{}/{}".format(key, idx), image=image_summary)
writer.add_summary(summary, global_step=step)
else:
summary = tf.Summary(value=[tf.Summary.Value(tag=key, simple_value=value)])
writer.add_summary(summary, global_step=step)
import torch
import math
irange = range
def make_grid(tensor, nrow=8, padding=2,
normalize=False, range=None, scale_each=False, pad_value=0):
"""Make a grid of images.
Args:
tensor (Tensor or list): 4D mini-batch Tensor of shape (B x C x H x W)
or a list of images all of the same size.
nrow (int, optional): Number of images displayed in each row of the grid.
The Final grid size is (B / nrow, nrow). Default is 8.
padding (int, optional): amount of padding. Default is 2.
normalize (bool, optional): If True, shift the image to the range (0, 1),
by subtracting the minimum and dividing by the maximum pixel value.
range (tuple, optional): tuple (min, max) where min and max are numbers,
then these numbers are used to normalize the image. By default, min and max
are computed from the tensor.
scale_each (bool, optional): If True, scale each image in the batch of
images separately rather than the (min, max) over all images.
pad_value (float, optional): Value for the padded pixels.
Example:
See this notebook `here <https://gist.github.com/anonymous/bf16430f7750c023141c562f3e9f2a91>`_
"""
if not (torch.is_tensor(tensor) or
(isinstance(tensor, list) and all(torch.is_tensor(t) for t in tensor))):
raise TypeError('tensor or list of tensors expected, got {}'.format(type(tensor)))
# if list of tensors, convert to a 4D mini-batch Tensor
if isinstance(tensor, list):
tensor = torch.stack(tensor, dim=0)
if tensor.dim() == 2: # single image H x W
tensor = tensor.view(1, tensor.size(0), tensor.size(1))
if tensor.dim() == 3: # single image
if tensor.size(0) == 1: # if single-channel, convert to 3-channel
tensor = torch.cat((tensor, tensor, tensor), 0)
return tensor
if tensor.dim() == 4 and tensor.size(1) == 1: # single-channel images
tensor = torch.cat((tensor, tensor, tensor), 1)
if normalize is True:
tensor = tensor.clone() # avoid modifying tensor in-place
if range is not None:
assert isinstance(range, tuple), \
"range has to be a tuple (min, max) if specified. min and max are numbers"
def norm_ip(img, min, max):
img.clamp_(min=min, max=max)
img.add_(-min).div_(max - min)
def norm_range(t, range):
if range is not None:
norm_ip(t, range[0], range[1])
else:
norm_ip(t, t.min(), t.max())
if scale_each is True:
for t in tensor: # loop over mini-batch dimension
norm_range(t, range)
else:
norm_range(tensor, range)
# make the mini-batch of images into a grid
nmaps = tensor.size(0)
xmaps = min(nrow, nmaps)
ymaps = int(math.ceil(float(nmaps) / xmaps))
height, width = int(tensor.size(2) + padding), int(tensor.size(3) + padding)
grid = tensor.new(3, height * ymaps + padding, width * xmaps + padding).fill_(pad_value)
k = 0
for y in irange(ymaps):
for x in irange(xmaps):
if k >= nmaps:
break
grid.narrow(1, y * height + padding, height - padding)\
.narrow(2, x * width + padding, width - padding)\
.copy_(tensor[k])
k = k + 1
return grid
def save_image(tensor, filename, nrow=8, padding=2,
normalize=False, range=None, scale_each=False, pad_value=0):
"""Save a given Tensor into an image file.
Args:
tensor (Tensor or list): Image to be saved. If given a mini-batch tensor,
saves the tensor as a grid of images by calling ``make_grid``.
**kwargs: Other arguments are documented in ``make_grid``.
"""
from PIL import Image
tensor = tensor.cpu()
grid = make_grid(tensor, nrow=nrow, padding=padding, pad_value=pad_value,
normalize=normalize, range=range, scale_each=scale_each)
ndarr = grid.mul(255).clamp(0, 255).byte().permute(1, 2, 0).numpy()
im = Image.fromarray(ndarr)
im.save(filename)