-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathwater_budget.py
executable file
·267 lines (242 loc) · 12.4 KB
/
water_budget.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
#!/usr/bin/env python
"""Water budget module
This module computes:
- the snow/rain fraction
- the snow cover
- the evapotranspiration
- the soil water availability
"""
__all__ = [
"main_snow",
"main_soil_water",
"calc_snow",
"calc_soil_water",
]
import dask.array as dask_arr
import numpy as np
import os
import xarray as xr
from typing import Iterable
from snowMAUS import snowmaus
def calc_snow(ds: xr.Dataset) -> xr.Dataset:
"""Calculate snowfall and melt
:param ds: Dataset containing variables "precipitation", "min_air_temp",
"max_air_temp", and "initial_snowcover"
:type ds: xr.Dataset
:return: Dataset containing variables "snowfall", "meltwater_production",
and "snowcover"
:rtype: xr.Dataset
"""
if ds.precipitation.isnull().all():
template = xr.DataArray(
dask_arr.zeros_like(ds.precipitation, dtype="f4", chunks=(-1, 37, 41)),
dims=ds.precipitation.dims,
coords=ds.precipitation.coords
)
return xr.merge([template.rename("snowfall"),
template.rename("meltwater_production"),
template.rename("snowcover")])
potential_melt = snowmaus.meltwater_production(ds.min_air_temp.values,
ds.max_air_temp.values)
snowfall = snowmaus.snowfall(ds.precipitation.values,
ds.min_air_temp.values)
melt = np.zeros_like(snowfall)
snowcover = np.zeros_like(snowfall)
for i in range(snowcover.shape[0]):
snowcover[i] = (snowcover[i-1] if i != 0 else ds.initial_snowcover.values)
snowcover[i] -= snowmaus.sublimed_snowcover(snowcover[i])
snowcover[i] += np.where(np.isnan(snowfall[i]), 0, snowfall[i])
melt[i] = np.where(potential_melt[i] > snowcover[i], snowcover[i], potential_melt[i])
snowcover[i] -= np.where(np.isnan(melt[i]), 0, melt[i])
snowcover = np.where(ds.min_air_temp.isnull().all("time"), np.nan, snowcover)
melt = np.where(ds.min_air_temp.isnull().all("time"), np.nan, melt)
return xr.Dataset({"snowfall": (ds.precipitation.dims, snowfall),
"meltwater_production": (ds.precipitation.dims, melt),
"snowcover": (ds.precipitation.dims, snowcover)},
coords=ds.precipitation.coords)
def calc_soil_water(ds: xr.Dataset) -> xr.Dataset:
"""Calculate evapotranspiration and soil water depletion
:param ds: Dataset containing variables "Kc_factor", "plant_height",
"precipitation", "wind_speed", "rel_humidity" "pot_evapotransp",
"snowfall", and "meltwater_production"
:type ds: xr.Dataset
:return: Dataset containing variables "evapotranspiration", "evapo_ETC", and
"soil_depletion"
:rtype: xr.Dataset
"""
if ds.Kc_factor.isnull().all():
template = xr.DataArray(
dask_arr.zeros(shape=(*ds.Kc_factor.shape, 2),
dtype="float",
chunks=(4, -1, 37, 41, 2)),
dims=[*ds.Kc_factor.dims, "layer"],
coords={**{k: ds.Kc_factor[k] for k in ds.Kc_factor.coords}, "layer": ds.TAW.layer}
)
return xr.merge([template.rename("evapotranspiration"),
template.rename("evapo_ETC"),
template.rename("soil_depletion")])
pot_interc_precip = 1.875 * ds.Kc_factor - 0.25
liq_precip = ds.precipitation - ds.snowfall
incoming_water = xr.where(pot_interc_precip <= liq_precip, liq_precip - pot_interc_precip, 0)
incoming_water += ds.meltwater_production
root_factor = xr.DataArray([.6, .4], coords={"layer": ["top", "sub"]})
ET0 = ds.pot_evapotransp * root_factor
climEff = xr.where(
ds.plant_height.isnull(),
0,
(.04 * (ds.wind_speed - 2)) - (.004 * (ds.rel_humidity - 45)) * (ds.plant_height / 3)**.3
) # !! should probably be bounded
Kc_plus_climEff = ds.Kc_factor + climEff
ETC = ds.Kc_factor * ET0
D_r = xr.DataArray(np.float32(0), dims=[*Kc_plus_climEff.dims, "layer"],
coords={**{k: Kc_plus_climEff[k] for k in Kc_plus_climEff.coords},
"layer": ds.TAW.layer}
).rename("soil_depletion")
ET = xr.DataArray(np.float32(np.nan), dims=[*Kc_plus_climEff.dims, "layer"],
coords={**{k: Kc_plus_climEff[k] for k in Kc_plus_climEff.coords},
"layer": ds.TAW.layer}
).rename("evapotranspiration")
for t in incoming_water.time[~incoming_water.time.dt.month.isin([1, 2, 12])].values:
i = np.argwhere(t == incoming_water.time.values).flatten()[0]
p__upper_lim, p__lower_lim = .1, .8
# p_T generally depends on crop. however, values not available
p_T = 0.6
p = p_T + (0.04 * (5 - ETC.sel(time=t)))
p = xr.where(p < p__lower_lim, p__lower_lim, xr.where(p > p__upper_lim, p__upper_lim, p))
Ks_i = (1 - D_r.isel(time=i-1)/ds.TAW).values / (1 - p)
Ks_i = xr.where(Ks_i < 0, 0, xr.where(Ks_i > 1, 1, Ks_i))
ET[:, i] = Ks_i * ET0.sel(time=t) * Kc_plus_climEff.sel(time=t)
toplayerimbalance = incoming_water.sel(time=t)\
- D_r.isel(time=i-1).squeeze().sel(layer="top") - ET.sel(time=t, layer="top")
maybe_new_top_layer_value = xr.where(toplayerimbalance < -ds.TAW.sel(layer="top"),
ds.TAW.sel(layer="top"),
-toplayerimbalance)
DP = xr.where(toplayerimbalance > 0, toplayerimbalance, 0)
sublayerimbalance = DP - D_r.isel(time=i-1).squeeze().sel(layer="sub")\
- ET.sel(time=t, layer="sub")
maybe_new_sub_layer_value = xr.where(sublayerimbalance < -ds.TAW.sel(layer="sub"),
ds.TAW.sel(layer="sub"),
-sublayerimbalance)
potential_depletion = xr.concat([maybe_new_top_layer_value, maybe_new_sub_layer_value],
dim="layer")
D_r[:, i] = xr.where(potential_depletion < 0, 0, potential_depletion)
return xr.merge([ET, ETC.rename("evapo_ETC"), D_r])
def main_soil_water(years: Iterable[int]):
"""Load input data and write soil related results to Zarr store
:param years: List of years to compute
:type years: Iterable[int]
"""
for year in years:
if os.path.isdir(f"../data/intermediate/{year}.zarr/soil_depletion"):
print(f"! WARNING: {year}.zarr/soil_depletion already exists. Skipping.")
continue
print("Calculating soil water and evapotranspiration for year", year)
pheno_ds = xr.open_zarr(f"../data/intermediate/{year}.zarr", decode_coords="all")
snow_ds = xr.open_zarr(f"../data/intermediate/snow_{year}.zarr", decode_coords="all")
meteo_ds = xr.open_zarr(f"../data/input/{year}.zarr", decode_coords="all")
TAW = xr.open_dataarray("../data/input/soil_taw.nc", decode_coords="all")
main_ds = xr.merge([pheno_ds, meteo_ds, TAW, snow_ds])\
.drop_vars(['lambert_conformal_conic'])
template = xr.DataArray(
dask_arr.zeros(shape=(*main_ds.Kc_factor.shape, 2),
dtype="f4",
chunks=(4, -1, 37, 41, 2)),
dims=[*main_ds.Kc_factor.dims, "layer"],
coords={**{k: main_ds.Kc_factor[k] for k in main_ds.Kc_factor.coords},
"layer": TAW.layer}
)
D_r = main_ds.map_blocks(calc_soil_water, template=xr.merge([
template.rename("evapotranspiration"),
template.rename("evapo_ETC"),
template.rename("soil_depletion")
]))
D_r.drop_encoding().to_zarr(f"../data/intermediate/{year}.zarr", mode="a-")
def main_snow(years: Iterable[int]):
"""Load input data and write snow related results to Zarr store
:param years: List of years to compute
:type years: Iterable[int]
"""
for year in years:
if os.path.isdir(f"../data/intermediate/snow_{year}.zarr"):
print(f"! WARNING: snow_{year}.zarr already exists. Skipping.")
continue
main_ds = xr.open_zarr(f"../data/input/{year}.zarr", decode_coords="all")
if (
os.path.isdir(f"../data/intermediate/snow_{year-1}.zarr")
and "snowcover" in xr.open_zarr(f"../data/intermediate/snow_{year-1}.zarr")
):
main_ds["initial_snowcover"] = xr.open_zarr(
f"../data/intermediate/snow_{year-1}.zarr").snowcover.isel(time=-1)
# next step is necessary! somehow this `xr.where` changes how the data looks internally
main_ds["precipitation"] = xr.where(main_ds.time.dt.month == 7,
0,
main_ds.precipitation)
else:
print("\n! WARNING: snowcover data for previous year are missing; initializing with "
"zero snowcover\n"
"consider not using data of this year for computing yield expectations\n")
main_ds["initial_snowcover"] = xr.zeros_like(main_ds.precipitation.isel(time=0))
main_ds["precipitation"] = xr.where(main_ds.time.dt.month < 8,
0,
main_ds.precipitation)
print("Calculating snow related variables for year", year)
template = xr.DataArray(
dask_arr.zeros_like(main_ds.precipitation, dtype="f4", chunks=(-1, 37, 41)),
dims=main_ds.precipitation.dims,
coords=main_ds.precipitation.coords
)
main_ds.map_blocks(calc_snow, template=xr.merge([
template.rename("snowfall"),
template.rename("meltwater_production"),
template.rename("snowcover")
])).drop_encoding().to_zarr(f"../data/intermediate/snow_{year}.zarr", mode="a")
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser(description="computes either the snow/melt or the soil water "
"and evapotranspiration")
parser.add_argument("-m", "--mode", type=str,
choices=["snow", "soil", "auto"],
default="auto",
help="choose which part of the water budget to compute")
parser.add_argument("years", type=int, nargs="*",
default=[2020, 2021, 2023],
help="list years to compute")
parser.add_argument("--workers", type=int, default=4, help="number of dask workers")
parser.add_argument("--mem-per-worker", type=str, default="2Gb",
help="memory per worker, e.g. \"5.67Gb\"")
args = parser.parse_args()
args.years = sorted(args.years)
if args.mode == "auto":
if all(os.path.isdir(f"../data/intermediate/snow_{year}.zarr") for year in args.years):
print("Snow related variables are present, assuming you mean to have the soil part "
"of the water budget computed")
args.mode = "soil"
else:
print("Snow related variables are missing for year(s):",
", ".join([str(year) for year in args.years
if not os.path.isdir(f"../data/intermediate/snow_{year}.zarr")])+".",
"Computing these now.")
args.mode = "snow"
from dask.distributed import LocalCluster, Client
print("Starting dask")
client = Client(LocalCluster(args.workers, memory_limit=args.mem_per_worker))
print("... access the dashboard at", client.dashboard_link)
try:
if args.mode == "snow":
main_snow(args.years)
else:
main_soil_water(args.years)
except (FileNotFoundError, ) as err:
if str(err).startswith("Unable to find group"):
print("\n! ERROR: data missing. Verify that the necessary data are available.\n")
raise
finally:
client.close()
print("Closed dask client\n")
print(f"Sucessfully computed {args.mode} related variables!\n")
if args.mode == "snow":
print("Continue by computing the crop coefficients (needed to calculate the "
"evapotranspiration later) by running\n\t`python phenology.py [year1 ...]`\n")
else:
print("Continue by computing the expected yield by running\n\t`python "
"yield_expectation.py [year1 ...]`\n")