-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathrun_homo.py
209 lines (171 loc) · 7.25 KB
/
run_homo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
#!python
# -*- coding: utf-8 -*-
# @author: Kun
"""
Sample code for siamese neural net for detecting spoofing attacks
"""
from __future__ import with_statement
from sklearn.metrics import roc_curve, auc, roc_auc_score
from text_models import string_sim
import random
import os
import numpy as np
import matplotlib.pyplot as plt
import editdistance
# import cPickle as pickle
import pickle
import codecs
import matplotlib
from utils.image_utils import generate_imgs
from vision_models.siamese_cnn import build_model
# matplotlib.use('Agg') # Matplotlib is currently using agg, which is a non-GUI backend, so cannot show the figure.
# If True, then it runs on a very small dataset (and results won't be that great)
isFast = True # False
dataset_type = 'process'
#dataset_type = 'domain'
OUTPUT_DIR = 'output'
if not os.path.isdir(OUTPUT_DIR):
os.mkdir(OUTPUT_DIR)
if dataset_type == 'domain':
OUTPUT_FILE = os.path.join(OUTPUT_DIR, 'domain_results.pkl')
INPUT_FILE = os.path.join('homo-data', 'domains_spoof.pkl')
IMAGE_FILE = os.path.join(OUTPUT_DIR, 'domains_roc_curve.png')
OUTPUT_NAME = 'Domain Spoofing'
elif dataset_type == 'process':
OUTPUT_FILE = os.path.join(OUTPUT_DIR, 'process_results.pkl')
INPUT_FILE = os.path.join('homo-data', 'process_spoof.pkl')
IMAGE_FILE = os.path.join(OUTPUT_DIR, 'process_roc_curve.png')
OUTPUT_NAME = 'Process Spoofing'
else:
raise Exception('Unknown dataset type: %s' % (dataset_type,))
if not os.path.isfile(OUTPUT_FILE):
font_location = "Arial.ttf"
font_size = 10
image_size = (150, 12)
text_location = (0, 0)
max_epochs = 50 # 25
with codecs.open(INPUT_FILE, mode="rb") as f:
data = pickle.load(f)
# train: 976122, validate: 51380, test: 256886
if isFast:
data['train'] = random.sample(data['train'], 70000)
data['validate'] = random.sample(data['validate'], 10000)
data['test'] = random.sample(data['test'], 20000)
max_epochs = 20 # 10
# organize data and translate from th to tf image ordering via .transpose( (0,2,3,1) )
X1_train = generate_imgs([x[0] for x in data['train']], font_location,
font_size, image_size, text_location).transpose((0, 2, 3, 1))
X2_train = generate_imgs([x[1] for x in data['train']], font_location,
font_size, image_size, text_location).transpose((0, 2, 3, 1))
y_train = [x[2] for x in data['train']]
X1_valid = generate_imgs([x[0] for x in data['validate']], font_location,
font_size, image_size, text_location).transpose((0, 2, 3, 1))
X2_valid = generate_imgs([x[1] for x in data['validate']], font_location,
font_size, image_size, text_location).transpose((0, 2, 3, 1))
y_valid = [x[2] for x in data['validate']]
X1_test = generate_imgs([x[0] for x in data['test']], font_location,
font_size, image_size, text_location).transpose((0, 2, 3, 1))
X2_test = generate_imgs([x[1] for x in data['test']], font_location,
font_size, image_size, text_location).transpose((0, 2, 3, 1))
y_test = [x[2] for x in data['test']]
model = build_model((12, 150, 1))
# First figure out how many epochs we need
max_auc = 0
max_idx = 0
for i in range(max_epochs):
model.fit([X1_train, X2_train], y_train, batch_size=8, epochs=1)
scores = [-x[0] for x in model.predict([X1_valid, X2_valid])]
t_auc = roc_auc_score(y_valid, scores)
if t_auc > max_auc:
print('Updated best AUC from %f to %f' % (max_auc, t_auc))
max_auc = t_auc
max_idx = i+1
# Train on the correct number of epochs
model = build_model((12, 150, 1))
model.fit([X1_train, X2_train], y_train, batch_size=8, epochs=max_idx)
# Save the NN
json_string = model.to_json()
model.save_weights(os.path.join(
OUTPUT_DIR, dataset_type + '_cnn.h5'), overwrite=True)
# 之前是 wb 模式 不对,到底写入什么
with codecs.open(os.path.join(OUTPUT_DIR, dataset_type + '_cnn.json'), 'w') as f:
f.write(json_string)
scores = [-x[0] for x in model.predict([X1_test, X2_test])]
fpr_siamese, tpr_siamese, threshold_siamese = roc_curve(y_test, scores)
roc_auc_siamese = auc(fpr_siamese, tpr_siamese)
print("threshold_siamese: ", threshold_siamese)
#
# Run Edit distance
#
scores = [(editdistance.eval(x[0].lower(), x[1].lower()),
len(x[0]), 1.0-x[2]) for x in data['test']]
y_percent_score = [float(x[0])/x[1] for x in scores]
y_score, _, y_test = zip(*scores)
fpr_ed, tpr_ed, threshold_ed = roc_curve(y_test, y_score)
roc_auc_ed = auc(fpr_ed, tpr_ed)
print("threshold_ed: ", threshold_ed)
fpr_ps, tpr_ps, threshold_ps = roc_curve(y_test, y_percent_score)
roc_auc_ps = auc(fpr_ps, tpr_ps)
print("threshold_ps: ", threshold_ps)
#
# Run editdistance visual similarity
#
scores = [(string_sim.howConfusableAre(
x[0].lower(), x[1].lower()), 1.0-x[2]) for x in data['test']]
y_score, y_test = zip(*scores)
fpr_edvs, tpr_edvs, threshold_edvs = roc_curve(
y_test, [-x for x in y_score])
roc_auc_edvs = auc(fpr_edvs, tpr_edvs)
print("threshold_edvs: ", threshold_edvs)
#
# Store results
#
results = {}
results['editdistance_vs'] = {
'fpr': fpr_edvs, 'tpr': tpr_edvs, 'threshold': threshold_edvs,
'auc': roc_auc_edvs}
results['editdistance'] = {
'fpr': fpr_ed, 'tpr': tpr_ed, 'threshold': threshold_ed,
'auc': roc_auc_ed}
results['editdistance_percent'] = {
'fpr': fpr_ps, 'tpr': tpr_ps, 'threshold': threshold_ps,
'auc': roc_auc_ps}
results['siamese'] = {
'fpr': fpr_siamese,
'tpr': tpr_siamese,
'threshold': threshold_siamese,
'auc': roc_auc_siamese}
with codecs.open(OUTPUT_FILE, 'wb') as f:
pickle.dump(results, f)
class StrToBytes:
def __init__(self, fileobj):
self.fileobj = fileobj
def read(self, size):
return self.fileobj.read(size).encode()
def readline(self, size=-1):
return self.fileobj.readline(size).encode()
with codecs.open(OUTPUT_FILE, "rb") as f:
results = pickle.load(f)
# results = pickle.load(StrToBytes(f))
print(results)
#
# Make Figures
#
fig = plt.figure()
plt.plot(results['siamese']['fpr'], results['siamese']['tpr'], 'b',
label='Siamese CNN (AUC=%0.4f)' % results['siamese']['auc'])
plt.plot(results['editdistance_vs']['fpr'], results['editdistance_vs']['tpr'], 'g',
label='Visual edit distance (AUC=%0.4f)' % results['editdistance_vs']['auc'])
plt.plot(results['editdistance']['fpr'], results['editdistance']['tpr'], 'r',
label='Edit distance (AUC=%0.4f)' % results['editdistance']['auc'])
plt.plot(results['editdistance_percent']['fpr'], results['editdistance_percent']['tpr'],
label='Percent edit distance (AUC=%0.4f)' % results['editdistance_percent']['auc'])
plt.plot([0, 1], [0, 1], 'k', lw=3, linestyle='--')
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('{} - Receiver Operating Characteristic'.format(OUTPUT_NAME))
plt.legend(loc="lower right")
fig.savefig(IMAGE_FILE)
plt.show()