-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathensemble_test.py
220 lines (172 loc) · 6.9 KB
/
ensemble_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
import argparse
import os
import time
from tqdm import tqdm
import shutil
from datetime import datetime
import matplotlib.pyplot as plt
import torch
import torch.distributed as dist
import torch.nn as nn
import apex
from apex import amp
from apex.parallel import DistributedDataParallel as DDP
from torchvision.transforms import ToPILImage
import segmentation_models_pytorch as smp
import ttach as tta
from config import cfg
from utils import *
from ensemble_dataset import AgriTestDataset
from model.deeplab import DeepLab
import sys
sys.path.append('./MSCG_Net/')
from mscg_tools.model import load_model as mscg_load_model
from MSCG_Net.config.configs_kf import *
from mscg_tools.ckpt import *
from mscg_tools.model import *
def save_result(info, pred):
classes = pred.argmax(dim=1, keepdim=True).cpu()
for i in range(classes.shape[0]):
result_png = ToPILImage()(classes[i].float() / 255.)
img_name = info[i]
# print(os.path.join(cfg.TEST.result, img_name.replace('.jpg', '.png')))
result_png.save(os.path.join(cfg.TEST.result, img_name.replace('.jpg', '.png')))
def test(loader_test, model,net1, args, logger):
model = tta.SegmentationTTAWrapper(model, tta.aliases.d4_transform(), merge_mode="mean")
model.eval()
net1 = tta.SegmentationTTAWrapper(net1, tta.aliases.d4_transform(), merge_mode="mean")
net1.eval()
if args.local_rank == 0:
loader_test = tqdm(loader_test, total=cfg.TEST.epoch_iters)
with torch.no_grad():
for img,img_mscg, mask, info in loader_test:
img = img.cuda()
img_mscg = img_mscg.cuda()
mask = mask.cuda()
# import ipdb; ipdb.set_trace()
pred = model(img)
pred1 = net1(img_mscg)
pred = pred+pred1*0.9 #1 50.78; 0.1
#pred *= mask.unsqueeze(1)
#pred[~mask.unsqueeze(1).expand_as(pred).bool()] = -2**15
pred = torch.softmax(pred,dim=1)
#pred = (pred > 0.5).type(pred.dtype)
save_result(info, pred)
def parse_args():
parser = argparse.ArgumentParser(
description="PyTorch Semantic Segmentation Training"
)
parser.add_argument(
"--local_rank",
default=0,
type=int
)
parser.add_argument(
"--cfg",
default="config/ade20k-resnet50dilated-ppm_deepsup.yaml",
metavar="FILE",
help="path to config file",
type=str,
)
args = parser.parse_args()
return args
def main():
net1 = mscg_load_model(name='MSCG-Rx101',
classes=9,
node_size=(32,32))
args = parse_args()
torch.backends.cudnn.benchmark = True
args.distributed = False
if 'WORLD_SIZE' in os.environ:
args.distributed = int(os.environ['WORLD_SIZE']) > 1
args.world_size = 1
if args.distributed:
torch.cuda.set_device(args.local_rank)
torch.distributed.init_process_group(backend='nccl',
init_method='env://')
args.world_size = torch.distributed.get_world_size()
# print(args.world_size, args.local_rank, args.distributed)
cfg.merge_from_file(args.cfg)
cfg.DIR = os.path.join(cfg.DIR,
args.cfg.split('/')[-1].split('.')[0] + 'test')
#datetime.now().strftime('-%Y-%m-%d-%a-%H:%M:%S:%f'))
# Output directory
# if not os.path.isdir(cfg.DIR):
if args.local_rank == 0:
os.makedirs(cfg.DIR, exist_ok=True)
os.makedirs(os.path.join(cfg.DIR, 'weight'), exist_ok=True)
os.makedirs(os.path.join(cfg.DIR, 'history'), exist_ok=True)
shutil.copy(args.cfg, cfg.DIR)
if os.path.exists(os.path.join(cfg.DIR, 'log.txt')):
os.remove(os.path.join(cfg.DIR, 'log.txt'))
logger = setup_logger(distributed_rank=args.local_rank,
filename=os.path.join(cfg.DIR, 'log.txt'))
logger.info("Loaded configuration file {}".format(args.cfg))
logger.info("Running with config:\n{}".format(cfg))
if cfg.MODEL.arch == 'deeplab':
model = DeepLab(num_classes=cfg.DATASET.num_class,
backbone=cfg.MODEL.backbone, # resnet101
output_stride=cfg.MODEL.os,
ibn_mode=cfg.MODEL.ibn_mode,
freeze_bn=False,
num_low_level_feat=cfg.MODEL.num_low_level_feat)
elif cfg.MODEL.arch == 'smp-deeplab':
model = smp.DeepLabV3(encoder_name='resnet101', classes=9)
elif cfg.MODEL.arch == 'FPN':
model = smp.FPN(encoder_name='resnet101',classes=9)
elif cfg.MODEL.arch == 'Unet':
model = smp.Unet(encoder_name='resnet101',classes=9)
convert_model(model, 4)
from pytorch_model_summary import summary
print(summary(model, torch.zeros((1, 4, 512, 512)), show_input=True))
#return
model = apex.parallel.convert_syncbn_model(model)
model = model.cuda()
net1.cuda()
model = amp.initialize(model, opt_level="O1")
if args.distributed:
model = DDP(model, delay_allreduce=True)
net1 = DDP(net1,delay_allreduce=True)
if cfg.TEST.checkpoint != "":
if args.local_rank == 0:
logger.info("Loading weight from {}".format(
cfg.TEST.checkpoint))
weight = torch.load(cfg.TEST.checkpoint,
map_location=lambda storage, loc: storage.cuda(args.local_rank))
if not args.distributed:
weight = {k[7:]: v for k, v in weight.items()}
model.load_state_dict(weight,strict=True)
mscgcheckpoint = torch.load('../../models/R101_baseline/epoch_20_loss_1.09793_acc_0.78908_acc-cls_0.61996_mean-iu_0.47694_fwavacc_0.65960_f1_0.63160_lr_0.0000946918.pth')
new_state_dict = OrderedDict()
for k, v in mscgcheckpoint.items():
name = 'module.'+k # remove 'module.'
new_state_dict[name]=v
net1.load_state_dict(new_state_dict)
# print("model loaded")
dataset_test = AgriTestDataset(
cfg.DATASET.root_dataset,
cfg.DATASET.list_test,
cfg.DATASET)
test_sampler = None
if args.distributed:
test_sampler = torch.utils.data.distributed.DistributedSampler(
dataset_test,
num_replicas=args.world_size,
rank=args.local_rank
)
loader_test = torch.utils.data.DataLoader(
dataset_test,
batch_size=cfg.TEST.batch_size_per_gpu,
shuffle=False, # we do not use this param
drop_last=False,
pin_memory=True,
sampler=test_sampler
)
cfg.TEST.epoch_iters = len(loader_test)
logger.info("World Size: {}".format(args.world_size))
logger.info("TEST.epoch_iters: {}".format(cfg.TEST.epoch_iters))
logger.info("TEST.sum_bs: {}".format(cfg.TEST.batch_size_per_gpu *
args.world_size))
test(loader_test, model,net1, args, logger)
if __name__ == '__main__':
main()