-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluation.py
634 lines (524 loc) · 26.7 KB
/
evaluation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
import sys
import random
from collections import namedtuple, defaultdict, Counter
from network2tikz import plot
import torch
from util import get_node_text, compute_structure_stats, cos_sim, mtl_result
_UPOS_CLASSES = {'f_adp': {'ADP'},
'f_part': {'PART'},
'f_cconj': {'CCONJ',},
'f_sconj': {'SCONJ'},
'f_pron': {'PRON'},
'f_det': {'DET'},
'f_aux': {'AUX'},
'punctuation': {'PUNCT'},
'number': {'NUM'},
'c_noun': {'NOUN', 'PROPN'},
'c_verb': {'VERB'},
'c_mod': {'ADJ', 'ADV'},
'c_misc': {'INTJ', 'SYM', 'X'}
}
# _UPOS_CLASSES = {'function': {'ADP', 'PART', 'CCONJ', 'SCONJ', 'PRON', 'DET', 'AUX'},
# 'punctuation': {'PUNCT'},
# 'number': {'NUM'},
# 'content': {'NOUN', 'PROPN', 'VERB', 'ADJ', 'ADV', 'INTJ', 'SYM', 'X'}
# }
UPOS_CLASSES = {}
for k, v in _UPOS_CLASSES.items():
for k2 in v:
UPOS_CLASSES[k2] = k
AUX_LOSSES = ['aux loss', 'hi_res loss', 'lo_res loss', 'emb loss']
def calib(confs, accs):
return torch.mean(torch.abs(torch.tensor(confs) - torch.tensor(accs)))
def get_interesting_tokens(logits1, logits2, labels, n=None):
logits1 = torch.log_softmax(logits1, dim=-1).detach()
logits2 = torch.log_softmax(logits2, dim=-1).detach()
nll1 = torch.nn.functional.nll_loss(logits1, labels, reduction='none')
nll2 = torch.nn.functional.nll_loss(logits2, labels, reduction='none')
nll_diff = nll2 - nll1
sorted_nlls, sorted_nll_idxs = torch.sort(nll_diff)
sorted_nlls = sorted_nlls.view(-1)
sorted_nll_idxs = sorted_nll_idxs.view(-1)
if n is not None and sorted_nll_idxs.size(0) > 2*n:
return torch.cat([sorted_nll_idxs[:n], sorted_nll_idxs[-n:]], dim=0), torch.cat([sorted_nlls[:n], sorted_nlls[-n:]], dim=0)
return sorted_nll_idxs, sorted_nlls
# algorithm from: On Some Pitfalls in Automatic Evaluation and Significance Testing for MT (Riezler & Maxwell, 2005)
def approx_rand_significance(outputs_a, outputs_b, output_sizes, R=10000, alphas=(0.05, 0.01, 0.005, 0.001),
aggregate='mean'):
n = len(output_sizes)
assert n == len(outputs_b) == len(outputs_a)
n_tok = sum(output_sizes)
if aggregate == 'mean':
aggr_fn = lambda s: sum(s) / n_tok
elif aggregate == 'exp_mean':
aggr_fn = lambda s: torch.exp(sum(s) / n_tok).item()
else:
raise NotImplementedError
real_diff = abs(aggr_fn(outputs_a) - aggr_fn(outputs_b))
c = 0
random_change = {0: real_diff}
idxs = list(range(n))
for r in range(R):
random.shuffle(idxs)
shuffle_a, shuffle_b = [], []
for i in idxs:
if random.randint(0, 1) == 1:
shuffle_a.append(outputs_b[i])
shuffle_b.append(outputs_a[i])
else:
shuffle_a.append(outputs_a[i])
shuffle_b.append(outputs_b[i])
pseudo_diff = abs(aggr_fn(shuffle_a) - aggr_fn(shuffle_b))
if pseudo_diff >= real_diff:
c += 1
random_change[r+1] = pseudo_diff
p = (c + 1) / (R + 1)
return p, random_change
def anchor_overlap(a, start, end):
a_start = a['from']
a_end = a['to']
return (a_start <= start and a_end > start) or \
(a_end >= end and a_start < end) or \
(a_start >= start and a_end <= end)
def get_all_structure_stats(sites, data, edge_labels, tokenizer, verbose=False):
sites_dict = defaultdict(list)
for d, s, t in sites:
sites_dict[s].append((d, t))
graphs_dict = {x['id']: x for x in data if x['id'] in sites_dict}
special_len = len('<|endoftext|>')
rels = ['parent', 'siblings', 'grandparents', 'aunts', 'child', 'coparents']
n_rels = defaultdict(list)
n_rel_labels = defaultdict(lambda: defaultdict(list))
n_una = 0
for d, s, t in sites:
graph = graphs_dict[s]
id2node = graph['id2node']
node2text = graph['node2text']
chars2node = graph['chars2node']
text = graph['text']
all_target_idxs = tokenizer(f'<|endoftext|>{text}', return_tensors='pt')
token_idxs = all_target_idxs.input_ids[0, 1:]
tokens = all_target_idxs.encodings[0].tokens[1:]
marker = ' ' * (len(text) + 1)
try:
char, end_char = all_target_idxs.token_to_chars(t+1)
char -= special_len
end_char -= special_len
except TypeError:
t = len(token_idxs)
char, end_char = all_target_idxs.token_to_chars(t)
char -= special_len
end_char -= special_len
marker = marker[:char+1] + '^' * (end_char - char) + marker[end_char+1:]
node_ids = [x for x, n in id2node.items() if 'anchors' in n and any(anchor_overlap(a, char, end_char) for a in n['anchors'])]
# TODO: any(anchor_overlap(a, char, end_char) ...) should (?) be equivalent to util.get_offset_diff([char, end_char], x, id2node)[1] == 0
node_ids = (((len(id2node[x].get('parents', [])),
len(id2node[x].get('children', []))), x) for x in node_ids)
_node_ids = sorted([(x, y) for x, y in node_ids],
reverse=True)
try:
node_id = _node_ids[0][1]
anchor = get_node_text(node_id, node2text, id2node)
except IndexError:
node_id = anchor = None
try:
tok_idx = token_idxs[t]
tok = tokenizer.decode(tok_idx)
except IndexError:
tok = tok_idx = None
if verbose:
print(marker, d, t, tok_idx, char, tok, node_id, anchor)
if node_id is not None:
local_n_rels, local_n_rel_labels = compute_structure_stats(node_id, id2node, node2text)
for r in rels:
n_rels[r].append(local_n_rels[r])
for l in edge_labels:
n_rel_labels[r][l].append(local_n_rel_labels[r][l])
if tok is not None and len(tok.strip()) < len(anchor):
n_una += 1
n = len(list(n_rels.values())[0])
rel_stats = []
label_stats = defaultdict(list)
nodes = ['tgt']
node_label = ['tgt']
node_opacity = [1.0]
edges = []
edge_label = []
edge_directed = []
una_stats = n_una / n
if n_una > 0:
nodes.append('una')
node_label.append('una')
node_opacity.append(una_stats)
r_lab = f'una-lab'
edges.append(('una', 'tgt'))
edge_label.append(f'{{una: {una_stats * 100:.1f}\%}}')
rel_node_opacity = []
for r in rels:
r_n = sum(n_rels[r])
r_p = r_n / n
rel_stats.append((r_p, r))
nodes.append(r)
node_label.append(f'{{{r}: {r_p:.1f}}}')
rel_node_opacity.append(r_p)
if r == 'parent':
edges.append((r, 'tgt'))
elif r == 'siblings':
edges.append(('parent', r))
elif r == 'grandparents':
edges.append((r, 'parent'))
elif r == 'aunts':
edges.append(('grandparents', r))
elif r == 'child':
edges.append(('tgt', r))
elif r == 'coparents':
edges.append((r, 'child'))
else:
raise ValueError(r)
for l, v in n_rel_labels[r].items():
if l != 'una' and sum(v) > 0:
l_p = (sum(v) * 100 / r_n) if r_n > 0 else 0.
label_stats[r].append((l_p, l))
edge_label.append(f'{{' + '\\\\'.join([f'{l}: {l_p:.1f}\%' for l_p, l in sorted(label_stats[r], reverse=True)[:5]]) + '}')
print(f'UNA: {una_stats:.1f}%', '|', ', '.join([f'{r}: {x:.1f}' for x, r in rel_stats]))
for r in rels:
if r in label_stats:
print(f'{r}:', ', '.join([f'{l}: {x:.1f}%' for x, l in sorted(label_stats[r], reverse=True)]))
max_rel_stat = max(rel_stats)[0]
style = {}
style['node_label'] = node_label
style['node_opacity'] = node_opacity + [x / max_rel_stat for x in rel_node_opacity]
style['layout'] = {'tgt': (0, 0),
'parent': (-3, 4),
'siblings': (-6, 0),
'grandparents': (-6, 8),
'aunts': (-9, 4),
'child': (-3, -4),
'coparents': (-9, 0),
'una': (-3, 0)}
style['node_color'] = {'tgt': 'red'}
style['canvas'] = (16, 16)
style['margin'] = 1
plot((nodes, []), filename='plot.tex', **style)
ignore_lines = ['\\documentclass{standalone}',
'\\usepackage{tikz-network}',
'\\begin{document}',
'\\end{tikzpicture}',
'\\end{document}']
with open('plot.tex') as f:
for line in f:
line = line.strip()
if line not in ignore_lines:
print(line.strip())
for (a, b), l in zip(edges, edge_label):
print(f'\\path[->] ({a}) edge node[align=right,shape=rectangle,fill=white] {l} ({b});')
print('\\end{tikzpicture}')
def eval_sub(logits, labels, tokenizer, top_n=1):
log_probs = torch.log_softmax(logits, dim=-1).detach()
sorted_ps, sorted_idxs = torch.sort(log_probs, descending=True)
sorted_ps = sorted_ps.view(-1, tokenizer.vocab_size)
sorted_idxs = sorted_idxs.view(-1, tokenizer.vocab_size)
nll = torch.nn.functional.nll_loss(log_probs, labels, reduction='sum')
position_correct = torch.max(sorted_idxs == labels.unsqueeze(1).expand(-1, sorted_idxs.size(1)),
dim=-1).indices.float()
sum_position_correct = torch.sum(position_correct).item()
sum_reciprocal_rank = torch.sum(1 / (position_correct + 1)).item()
del position_correct
sum_entropy = torch.distributions.Categorical(logits=logits).entropy().sum().item()
ps = []
rs = []
pdms = []
vocab = set()
for n in range(1, top_n+1):
p = 100 * n / tokenizer.vocab_size
ps.append(p)
recalled = 0
m = 0
pdm = sorted_ps[:, :n].exp().sum(dim=-1)
pdms.append(pdm.sum().item())
del pdm
for i, b in enumerate(sorted_idxs[:, :n]):
idx = labels[i]
if idx != -100:
if idx in b:
recalled += 1
idx = idx.item()
if idx not in vocab:
vocab.add(idx)
m += 1
rs.append(recalled / m)
del sorted_ps, sorted_idxs
torch.cuda.empty_cache()
return {'count': m, 'conf': pdms[0], 'acc': recalled, 'ppl': nll,
'avg_position_correct': sum_position_correct, 'mrr': sum_reciprocal_rank,
'entropy': sum_entropy, 'vocab': vocab}
def eval_snap(predicted, gold, sizes, types):
sub_pred = torch.split(predicted, sizes, dim=-1)
sub_gold = torch.split(gold, sizes, dim=-1)
result = defaultdict(list)
with torch.no_grad():
for i, (pre, gol, siz, typ) in enumerate(zip(sub_pred, sub_gold, sizes, types)):
result[f'{typ}_nonzerodim'].append(((pre.count_nonzero() - gol.count_nonzero()) / siz).item())
result[f'{typ}_norm'].append((torch.linalg.vector_norm(pre) - torch.linalg.vector_norm(gol)).item())
result[f'{typ}_cos'].append((cos_sim(pre.reshape(1, -1), torch.ones(1, pre.numel(), device=pre.device)) - \
cos_sim(gol.reshape(1, -1), torch.ones(1, gol.numel(), device=gol.device))).item())
return result
def eval_all(model, tokenizer, data, domains, device='cpu'):
model.eval()
graph_evals = defaultdict(lambda: defaultdict(list))
lm_evals1 = defaultdict(lambda: defaultdict(list))
lm_evals2 = defaultdict(lambda: defaultdict(list))
lm_evals3 = defaultdict(lambda: defaultdict(list))
for i, (id_batch, x_batch, l_batch, token_batch, first_token_batch) in enumerate(data):
batch_domains = [domains[_id] for _id in id_batch]
domain_counts = Counter(batch_domains)
if len(domain_counts) > 1:
top_domain = domain_counts.most_common(1)[0][0]
print(f'WARNING: batch contains multiple different domains: {domain_counts} -> choosing most common one: {top_domain}', file=sys.stderr)
batch_domain = top_domain
else:
batch_domain = batch_domains[0]
model_outputs = model(l_batch, gm_inputs=x_batch, plm_gm_tokens=token_batch)
gm_labels = torch.gather(l_batch, 1, token_batch)
if gm_labels.size(1) != l_batch.size(1) - 1:
print(f'WARNING: token index mismatch: {l_batch.size(1) - 1}, {gm_labels.size(1)}, {l_batch}, {gm_labels}, {tokenizer.batch_decode(l_batch)}, {tokenizer.batch_decode(gm_labels)}', file=sys.stderr)
continue
gm_labels3 = torch.gather(l_batch, 1, first_token_batch)
gm_labels[gm_labels == tokenizer.eos_token_id] = -100
gm_labels = gm_labels.view(-1)
_gm_mask = gm_labels != -100
gm_labels = gm_labels[_gm_mask]
graph_outputs = model_outputs.graph_result
gm_logits = graph_outputs.logits
_graph_evals = eval_sub(gm_logits, gm_labels, tokenizer)
del gm_logits
gm_labels3[gm_labels3 == tokenizer.eos_token_id] = -100
gm_labels3 = gm_labels3.view(-1)
_gm_mask3 = gm_labels3 != -100
torch.cuda.empty_cache()
for key, value in _graph_evals.items():
graph_evals['all'][key].append(value)
graph_evals[batch_domain][key].append(value)
del x_batch
torch.cuda.empty_cache()
lm_labels = l_batch[:, 1:].reshape(-1)
lm_logits1 = model_outputs.lm_result.logits[:, :-1].reshape(-1, tokenizer.vocab_size)
lm_logits1 = lm_logits1[lm_labels != -100]
lm_labels = lm_labels[lm_labels != -100]
lm_logits2 = torch.gather(torch.cat(
[torch.zeros(token_batch.size(0), 1, tokenizer.vocab_size, device=device), model_outputs.lm_result.logits],
dim=1), 1, token_batch.unsqueeze(-1).expand(-1, -1, tokenizer.vocab_size))
del token_batch
torch.cuda.empty_cache()
lm_logits2 = lm_logits2.view(-1, tokenizer.vocab_size)[_gm_mask]
lm_logits3 = torch.gather(torch.cat(
[torch.zeros(first_token_batch.size(0), 1, tokenizer.vocab_size, device=device), model_outputs.lm_result.logits],
dim=1), 1, first_token_batch.unsqueeze(-1).expand(-1, -1, tokenizer.vocab_size))
del first_token_batch
torch.cuda.empty_cache()
lm_logits3 = lm_logits3.view(-1, tokenizer.vocab_size)[_gm_mask3]
del l_batch
_lm_evals1 = eval_sub(lm_logits1, lm_labels, tokenizer)
_lm_evals2 = eval_sub(lm_logits2, gm_labels, tokenizer)
_lm_evals3 = eval_sub(lm_logits3, gm_labels3, tokenizer)
del lm_logits1
torch.cuda.empty_cache()
del lm_logits2
torch.cuda.empty_cache()
del lm_logits3
del gm_labels, lm_labels, gm_labels3
torch.cuda.empty_cache()
for key, value in _lm_evals1.items():
lm_evals1['all'][key].append(value)
lm_evals1[batch_domain][key].append(value)
for key, value in _lm_evals2.items():
lm_evals2['all'][key].append(value)
lm_evals2[batch_domain][key].append(value)
for key, value in _lm_evals3.items():
lm_evals3['all'][key].append(value)
lm_evals3[batch_domain][key].append(value)
print(i, id_batch, file=sys.stderr)
_result = {'lm1': lm_evals1, 'lm2': lm_evals2, 'lm3': lm_evals3,
'graph2': graph_evals}
result = defaultdict(lambda: defaultdict(dict))
for model, val in _result.items():
for dmn, val2 in val.items():
counts = val2['count']
toks = sum(counts)
sents = len(counts)
result[dmn][model]['count'] = toks
result[dmn][model]['toks/sent'] = toks / sents
result[dmn][model]['sents'] = sents
for metric, val3 in val2.items():
if metric == 'ppl':
result[dmn][model][metric] = torch.exp(sum(val3) / toks).item()
elif metric != 'count':
result[dmn][model][metric] = sum(val3) / toks
return result
def eval_combined(model, tokenizer, data, domains, interesting_n=100, ud_upos=None, device='cpu'):
model.eval()
gold_combined_evals = defaultdict(lambda: defaultdict(list))
auto_combined_evals = defaultdict(lambda: defaultdict(list))
lm_evals = defaultdict(lambda: defaultdict(list))
graph_evals = defaultdict(lambda: defaultdict(list))
gold_combined_pos_evals = defaultdict(lambda: defaultdict(list))
auto_combined_pos_evals = defaultdict(lambda: defaultdict(list))
lm_pos_evals = defaultdict(lambda: defaultdict(list))
graph_pos_evals = defaultdict(lambda: defaultdict(list))
max_neg_diff = 0.
min_pos_diff = 0.
neg_diffs = []
pos_diffs = []
for i, (id_batch, x_batch, l_batch, token_batch, first_token_batch) in enumerate(data):
batch_domains = [domains[_id] for _id in id_batch]
domain_counts = Counter(batch_domains)
if len(domain_counts) > 1:
top_domain = domain_counts.most_common(1)[0][0]
print(f'WARNING: batch contains multiple different domains: {domain_counts} -> choosing most common one: {top_domain}', file=sys.stderr)
batch_domain = top_domain
else:
batch_domain = batch_domains[0]
sent_ids = torch.arange(len(id_batch), device=device).unsqueeze(1).expand(-1, l_batch.size(-1) - 1)
tok_ids = torch.arange(l_batch.size(-1) - 1, device=device).unsqueeze(0).expand(len(id_batch), -1)
gm_labels = torch.gather(l_batch, 1, token_batch)
if gm_labels.size(1) != l_batch.size(1) - 1:
print(f'WARNING: token index mismatch: {l_batch.size(1) - 1}, {gm_labels.size(1)}, {l_batch}, {gm_labels}, {tokenizer.batch_decode(l_batch)}, {tokenizer.batch_decode(gm_labels)}', file=sys.stderr)
continue
gm_sent_ids = torch.gather(sent_ids, 1, token_batch - 1)
gm_tok_ids = torch.gather(tok_ids, 1, token_batch - 1)
torch.cuda.empty_cache()
gm_labels[gm_labels == tokenizer.eos_token_id] = -100
gm_labels = gm_labels.view(-1)
_gm_mask = gm_labels != -100
gm_labels = gm_labels[_gm_mask]
gm_sent_ids = gm_sent_ids.view(-1)[_gm_mask]
gm_tok_ids = gm_tok_ids.view(-1)[_gm_mask]
gold_combined_outputs = model(l_batch, gm_inputs=x_batch, plm_gm_tokens=token_batch, softmax=False, c=1.,
loss_fxn=lambda x, y: (torch.nn.functional.nll_loss(x, y), 0, torch.zeros(1), torch.zeros(1)))
auto_combined_outputs = model(l_batch, gm_inputs=x_batch, plm_gm_tokens=token_batch, softmax=False, c=0.,
loss_fxn=lambda x, y: (torch.nn.functional.nll_loss(x, y), 0, torch.zeros(1), torch.zeros(1)))
lm_outputs = gold_combined_outputs.lm_result
_lm_outputs = model(l_batch, gm_inputs=x_batch, plm_gm_tokens=token_batch, softmax=False, use_graph=False,
loss_fxn=lambda x, y: (torch.nn.functional.nll_loss(x, y), 0, torch.zeros(1), torch.zeros(1)))
graph_outputs = gold_combined_outputs.graph_result
torch.cuda.empty_cache()
gold_combined_logits2 = gold_combined_outputs.logits.view(-1, tokenizer.vocab_size)
auto_combined_logits2 = auto_combined_outputs.logits.view(-1, tokenizer.vocab_size)
lm_logits2 = lm_outputs.logits[:, :-1].reshape(-1, tokenizer.vocab_size)[_gm_mask]
_lm_logits2 = _lm_outputs.logits.view(-1, tokenizer.vocab_size)
graph_logits2 = graph_outputs.logits.view(-1, tokenizer.vocab_size)
assert lm_logits2.size() == _lm_logits2.size(), (lm_logits2.size(), _lm_logits2.size())
del _lm_logits2
torch.cuda.empty_cache()
del l_batch
_gold_combined_evals2 = eval_sub(gold_combined_logits2, gm_labels, tokenizer)
_gold_combined_evals2['lm loss'] = float(gold_combined_outputs.lm_result.loss) * gm_labels.size(0)
_gold_combined_evals2['graph loss'] = float(gold_combined_outputs.graph_result.loss) * gm_labels.size(0)
for name, loss in zip(AUX_LOSSES, gold_combined_outputs.aux_losses):
_gold_combined_evals2[name] = float(loss) * gm_labels.size(0)
_auto_combined_evals2 = eval_sub(auto_combined_logits2, gm_labels, tokenizer)
_auto_combined_evals2['lm loss'] = float(auto_combined_outputs.lm_result.loss) * gm_labels.size(0)
_auto_combined_evals2['graph loss'] = float(auto_combined_outputs.graph_result.loss) * gm_labels.size(0)
for name, loss in zip(AUX_LOSSES, auto_combined_outputs.aux_losses):
_auto_combined_evals2[name] = float(loss) * gm_labels.size(0)
if isinstance(auto_combined_outputs, mtl_result) and auto_combined_outputs.snapshot_eval is not None:
for name, v in auto_combined_outputs.snapshot_eval.items():
_auto_combined_evals2[name] = sum(v)
_lm_evals2 = eval_sub(lm_logits2, gm_labels, tokenizer)
_graph_evals2 = eval_sub(graph_logits2, gm_labels, tokenizer)
for key, value in _gold_combined_evals2.items():
gold_combined_evals['all'][key].append(value)
gold_combined_evals[batch_domain][key].append(value)
for key, value in _auto_combined_evals2.items():
auto_combined_evals['all'][key].append(_auto_combined_evals2[key])
auto_combined_evals[batch_domain][key].append(_auto_combined_evals2[key])
for key, value in _lm_evals2.items():
lm_evals['all'][key].append(_lm_evals2[key])
lm_evals[batch_domain][key].append(_lm_evals2[key])
for key, value in _graph_evals2.items():
graph_evals['all'][key].append(_graph_evals2[key])
graph_evals[batch_domain][key].append(_graph_evals2[key])
# TODO: add una-length breakdown
# TODO: plot sentence-wise NLLs/PPLs across two models
if ud_upos is not None:
gold_combined_pos_logits2 = defaultdict(list)
auto_combined_pos_logits2 = defaultdict(list)
lm_pos_logits2 = defaultdict(list)
graph_pos_logits2 = defaultdict(list)
pos_labels = defaultdict(list)
for m, (j, k, l) in enumerate(zip(gm_sent_ids, gm_tok_ids, gm_labels)):
sent_id = id_batch[j]
pos = ud_upos[sent_id][k+1]
pos_class = UPOS_CLASSES[pos]
gold_combined_pos_logits2[pos_class].append(gold_combined_logits2[[m]])
auto_combined_pos_logits2[pos_class].append(auto_combined_logits2[[m]])
lm_pos_logits2[pos_class].append(lm_logits2[[m]])
graph_pos_logits2[pos_class].append(graph_logits2[[m]])
pos_labels[pos_class].append(l.unsqueeze(0))
for pos_class, labels in pos_labels.items():
labels = torch.cat(labels, dim=0)
_gold_combined_pos_evals = eval_sub(torch.cat(gold_combined_pos_logits2[pos_class], dim=0),
labels, tokenizer)
_auto_combined_pos_evals = eval_sub(torch.cat(auto_combined_pos_logits2[pos_class], dim=0),
labels, tokenizer)
_lm_pos_evals = eval_sub(torch.cat(lm_pos_logits2[pos_class], dim=0),
labels, tokenizer)
_graph_pos_evals = eval_sub(torch.cat(graph_pos_logits2[pos_class], dim=0),
labels, tokenizer)
for key, value in _gold_combined_pos_evals.items():
gold_combined_pos_evals[pos_class][key].append(value)
for key, value in _auto_combined_pos_evals.items():
auto_combined_pos_evals[pos_class][key].append(_auto_combined_pos_evals[key])
for key, value in _lm_pos_evals.items():
lm_pos_evals[pos_class][key].append(_lm_pos_evals[key])
for key, value in _graph_pos_evals.items():
graph_pos_evals[pos_class][key].append(_graph_pos_evals[key])
_interesting_tokens, interesting_nll_diffs = get_interesting_tokens(lm_logits2, gold_combined_logits2,
gm_labels,
n=interesting_n)
_interesting_sentences = torch.gather(gm_sent_ids, 0, _interesting_tokens)
interesting_sentences = [id_batch[x] for x in _interesting_sentences]
interesting_tokens = torch.gather(gm_tok_ids, 0, _interesting_tokens)
for d, s, t in zip(interesting_nll_diffs, interesting_sentences, interesting_tokens):
d = d.item()
t = t.item()
if len(neg_diffs) < interesting_n or d < max_neg_diff:
neg_diffs.append((d, s, t))
max_neg_diff = max(d, max_neg_diff)
if len(pos_diffs) < interesting_n or d > min_pos_diff:
pos_diffs.append((d, s, t))
min_pos_diff = min(d, min_pos_diff)
del gm_sent_ids, gm_tok_ids, interesting_tokens, _interesting_tokens, interesting_nll_diffs, _interesting_sentences
torch.cuda.empty_cache()
del gold_combined_logits2, auto_combined_logits2, graph_logits2, lm_logits2 #, lm_loss2
torch.cuda.empty_cache()
del gm_labels
torch.cuda.empty_cache()
print(i, id_batch, file=sys.stderr)
_result = {'gold2': gold_combined_evals, 'auto2': auto_combined_evals, 'lm2': lm_evals, 'graph2': graph_evals}
if ud_upos is not None:
pos_results = {'gold2': gold_combined_pos_evals,
'auto2': auto_combined_pos_evals,
'lm2': lm_pos_evals,
'graph2': graph_pos_evals}
result = defaultdict(lambda: defaultdict(dict))
for model, val in _result.items():
all_items = sorted(val.items())
if ud_upos is not None:
all_items += sorted(pos_results[model].items())
for dmn, val2 in all_items:
counts = val2['count']
toks = sum(counts)
sents = len(counts)
result[dmn][model]['count'] = toks
result[dmn][model]['toks/sent'] = toks / sents
result[dmn][model]['sents'] = sents
for metric, val3 in val2.items():
if metric == 'ppl':
result[dmn][model][metric] = torch.exp(sum(val3) / toks).item()
elif metric == 'vocab':
result[dmn][model][metric] = len(set.union(*val3))
elif metric != 'count':
result[dmn][model][metric] = sum(val3) / toks
result['all']['diff_tokens'] = neg_diffs, pos_diffs
return result, _result