forked from MatthewCYM/VoiceBench
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
56 lines (47 loc) · 1.91 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
from datasets import load_dataset, Audio
from argparse import ArgumentParser
from src.models import model_cls_mapping
import json
from tqdm import tqdm
from loguru import logger
def main():
parser = ArgumentParser()
parser.add_argument('--model', type=str, default='qwen2', choices=list(model_cls_mapping.keys()))
parser.add_argument('--data', type=str, default='alpacaeval')
parser.add_argument('--split', type=str, default='test')
parser.add_argument('--modality', type=str, default='audio', choices=['audio', 'text', 'ttft'])
args = parser.parse_args()
# load data
data = load_dataset('hlt-lab/voicebench', args.data, split=args.split)
data = data.cast_column("audio", Audio(sampling_rate=16_000))
# load model
model = model_cls_mapping[args.model]()
# data = data.select([0,1,2,3,4,5])
if args.modality == 'ttft':
# avoid cold start
_ = model.generate_ttft(data[0]['audio'])
# inference
results = []
for item in tqdm(data, total=len(data)):
tmp = {k: v for k, v in item.items() if k != 'audio'}
if args.modality == 'text':
response = model.generate_text(item['prompt'])
elif args.modality == 'audio':
response = model.generate_audio(item['audio'])
elif args.modality == 'ttft':
response = model.generate_ttft(item['audio'])
else:
raise NotImplementedError
logger.info(item['prompt'])
logger.info(response)
logger.info('====================================')
tmp['response'] = response
results.append(tmp)
# save results
output_file = f'{args.model}-{args.data}-{args.split}-{args.modality}.jsonl'
with open(output_file, 'w') as f:
for record in results:
json_line = json.dumps(record) # Convert dictionary to JSON string
f.write(json_line + '\n')
if __name__ == '__main__':
main()