-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path2014-02-27-Neural-Network.html
629 lines (452 loc) · 11.8 KB
/
2014-02-27-Neural-Network.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
<!DOCTYPE html>
<html>
<head>
<title>Data Mining</title>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>
<style type="text/css">
@import url(http://fonts.googleapis.com/css?family=Droid+Serif);
@import url(http://fonts.googleapis.com/css?family=Yanone+Kaffeesatz);
body {
font-family: 'Droid Serif';
font-size: 25px;
}
.remark-slide-content {
padding: 1em 2em 1em 2em;
}
h1, h2, h3 {
font-family: 'Yanone Kaffeesatz';
font-weight: 400;
margin-top: 0;
margin-bottom: 0;
}
h1 { font-size: 3em; }
h2 { font-size: 1.8em; }
h3 { font-size: 1.4em; }
.footnote {
position: absolute;
bottom: 3em;
}
ul { margin: 8px;}
li p { line-height: 1.25em; }
.red { color: #fa0000; }
.large { font-size: 2em; }
a, a > code {
color: rgb(249, 38, 114);
text-decoration: none;
}
code {
-moz-border-radius: 3px;
-web-border-radius: 3px;
background: #e7e8e2;
color: black;
border-radius: 3px;
}
.tight-code {
font-size: 20px;
}
.white-background {
background-color: white;
padding: 10px;
display: block;
margin-left: auto;
margin-right: auto;
}
.limit-size img {
height: auto;
width: auto;
max-width: 1000px;
max-height: 500px;
}
em { color: #80cafa; }
.pull-left {
float: left;
width: 47%;
}
.pull-right {
float: right;
width: 47%;
}
.pull-right ~ p {
clear: both;
}
#slideshow .slide .content code {
font-size: 1.6em;
}
#slideshow .slide .content pre code {
font-size: 1.6em;
padding: 15px;
}
.inverse {
background: #272822;
color: #e3e3e3;
text-shadow: 0 0 20px #333;
}
.inverse h1, .inverse h2 {
color: #f3f3f3;
line-height: 1.6em;
}
/* Slide-specific styling */
#slide-inverse .footnote {
bottom: 12px;
left: 20px;
}
#slide-how .slides {
font-size: 1.6em;
position: absolute;
top: 151px;
right: 140px;
}
#slide-how .slides h3 {
margin-top: 0.2em;
}
#slide-how .slides .first, #slide-how .slides .second {
padding: 1px 20px;
height: 90px;
width: 120px;
-moz-box-shadow: 0 0 10px #777;
-webkit-box-shadow: 0 0 10px #777;
box-shadow: 0 0 10px #777;
}
#slide-how .slides .first {
background: #fff;
position: absolute;
top: 20%;
left: 20%;
z-index: 1;
}
#slide-how .slides .second {
position: relative;
background: #fff;
z-index: 0;
}
.center {
float: center;
}
/* Two-column layout */
.left-column {
width: 48%;
float: left;
}
.right-column {
width: 48%;
float: right;
}
.right-column img {
max-width: 120%;
max-height: 120%;
}
/* Tables */
table {
border-collapse: collapse;
margin: 0px;
}
table, th, td {
border: 1px solid white;
}
th, td {
padding: 7px;
}
</style>
</head>
<body>
<textarea id="source">
name: inverse
layout: true
class: left, top, inverse
---
# Bias vs. Variance
---
## Trade-offs
+ Similar to precision, we make trade-offs when training models
+ Bias: How far off are the model predictions on average?
+ Variance: If we retrained with different data, how different would our
guesses be?
???
## Details
+ Bias: difference in "Expected" value from models from the real value
+ Variance: difference in "Expected" value from each other
+ Variance: Another way to think about it: how specific is our model to our
data? If we were training a tree with k-fold validation, would we get
completely different rule sets for each set of data?
+ "Expected": These are *model type* properties. Train the model multiple
times with different data, then evaluate all models performance
---
## Regression
+ Can we do better than linear regression on some data sets?
+ Polynomial regression
+ How many polynomials?
<img src="img/overfit1.png"/>
???
## Polynomial
+ Sure! Use a polynomial instead: x<sup>2</sup>, 2x - x<sup>2</sup> + 4x<sup>3</sup>, ...
+ If you're not sure what the underlying data model is, have to test
+ img: http://cheshmi.tumblr.com/
---
## One
<img src="img/overfit1.png"/>
???
## So-So
+ How is the bias? Not great, fair amount of error
+ How is the variance? Pretty good, assuming random sample
---
## Two
<img src="img/overfit2.png"/>
???
## Better
+ Bias? Better, less error
+ Variance? more risky depending on which samples you get, since model
diverges quickly
---
## Three
<img src="img/overfit3.png"/>
???
## Worrying
+ Now getting a little weird. We're not finding the general pattern, more
like exactly fitting a line over these points
+ If we made model with different data, we're going to get a different line
---
## Many
<img src="img/overfit5.png" width=50% />
???
## Now kind of ridiculous
+ Intuitively we know this is not a description of the data
+ If a point was found near the border, completely dependant on the data the
model trained on
---
## Over-fitting
+ Over-fitting
+ reflecting the exact data given instead of the general pattern
+ High variance is a sign of over-fitting
+ model guesses vary with the exact data given
+ Avoidance
+ ensembles average out variance, regularization adds a cost to model complexity
???
## Avoidance
+ Ensembles combine multiple models together. Those multiple models may have
a lot of variance, but as long as they have good Bias, we'll center in on
the correct result
+ Remember our cost function? We wanted to minimize the error. If you add in
a way to measure model complexity, you can add that to the cost, so that
you are explicitly trading-off the complexity of your model with the
quality of the solution
+ If we wanted to add a complexity cost to the previous model, what would the
cost be dependent on?
---
## Neural Networks
<img src="img/neuron_culture.jpg" width=90% />
???
+ img: http://adrianbowyer.blogspot.com/2010/12/hardwired.html
---
## Brains
+ Neural networks try to model our brains
+ Neurons/perceptrons sense input, transform it, send output
+ Neurons/perceptrons are connected together
+ Connections have different strengths
---
## Training
+ Learn by adjusting the strengths of the connections
+ Mathematically, strength is a weight multiplier of the output
+ Training is complete when we've found good weights
---
## Nomenclature
.left-column[
Input layer
+ neurons whose input is determined by features
Hidden layer
+ neurons that calculate a combination of features
Output layer
+ neurons that express the classification
Weights
+ numeric parameter to adjust input/output
]
.right-column[
.white-background[
<img src="img/nn.png" width=100% />
]
]
---
## Handwriting
+ Recognize handwritten digits
.white-background[
<img src="img/neuron11.gif" width=70% />
]
???
## Inputs => Outputs
+ Break up drawing cell into pixels
+ Input takes pixel=on|off
+ Output is highest valued output node, 1 for each digit
+ img: http://vv.carleton.ca/~neil/neural/neuron-d.html
---
## Forward Propagation
1. Sum of inputs * weights
1. Apply sigmoid
1. Send output to next layer
1. Repeat
---
## Repeat
+ Multiple hidden layers used to model complex feature interaction
<img src="img/2-layer-nn.gif" width=70% />
---
## Sigmoid
+ Normalize input to [0,1]
+ Makes weak input weaker, strong input stronger
+ ```1 / (1 + e^-input)```
.white-background[
<img src="img/sigmoid.png" width=90% />
]
---
## Example
.white-background[
<img src="img/nn-fp1.png" width=80% />
]
???
## Simple
+ Simple NN with just one output
+ Output can model true/false
+ Inputs are numerical
---
## Weights
.white-background[
<img src="img/ann2.png" width=80% />
]
???
## Later
+ We'll discuss how weights are determined later
+ Fill in the Hidden layer with sum of inputs * weights
---
## Sigmoid
.white-background[
<img src="img/ann3.png" width=80% />
]
???
## Apply
+ Apply the sigmoid to the incoming signals
---
## Sigmoid
.white-background[
<img src="img/ann4.png" width=80% />
]
???
## Apply
+ Apply the sigmoid to the incoming signals
---
## Sigmoid
.white-background[
<img src="img/ann5.png" width=80% />
]
???
## Apply
+ Apply the sigmoid to the incoming signals
---
## Sigmoid
.white-background[
<img src="img/ann6.png" width=80% />
]
???
## Apply
+ Apply the sigmoid to the incoming signals
---
## Weights
.white-background[
<img src="img/ann7.png" width=80% />
]
???
## Repeat
+ Take the outputs, apply weights, sum
---
## Sigmoid
.white-background[
<img src="img/ann8.png" width=80% />
]
???
## Apply
+ Apply the sigmoid to the incoming signals
+ Our result is greater than 0.5, so we can assume true
+ If we had multiple outputs, we could choose the highest one
---
## Forward Propagation
1. Sum of inputs * weights
1. Apply sigmoid
1. Send output to next layer
1. Repeat
???
## Get an answer
+ Now we have *an* output, but how do we train to get the *right* output?
---
## Fitness Function
+ Create a fitness function that measures the error
+ Take the derivative and a step in the right direction
+ Try again
???
## Neural Network
+ NN training is conceptually similar to gradient descent
+ We want to get closer to the answer, so we adjust our weights based on the
amount of incorrectness in the system
+ Adjust weights, try again
---
## Back Propagation
+ Run forward
+ O<sub>j</sub> is output of node j
+ Calculate error of output layer
+ Err<sub>j</sub> = O<sub>j</sub>(1 - O<sub>j</sub>)(T<sub>j</sub>-O<sub>j</sub>)
+ Caclulate error of hidden layer
+ Err<sub>j</sub> = O<sub>j</sub>(1 - O<sub>j</sub>) sum(Err<sub>k</sub> w<sub>jk</sub>)
+ Find new weights
+ w<sub>ij</sub> = w<sub>ij</sub> + l Err<sub>j</sub> O<sub>i</sub>
+ Repeat
+ To move closer to correct weights
???
## Derivative
+ Derivative of the sigmoid is O<sub>j</sub>(1 - O<sub>j</sub>), so we're taking the gradient
+ ```l``` is the learning rate, similar to ```a``` step size in gradient descent
---
### Example
.left-column[
+ Expected Output is 0
+ t<sub>6</sub> = 0
+ Actual Output
+ o<sub>6</sub> = 0.8387
+ Output Error:
+ err<sub>6</sub> =
+ o<sub>6</sub>\*(1-o<sub>6</sub>)\*(t<sub>6</sub>-o<sub>6</sub>) =
+ -0.11346127339699999
+ Setup hidden node 5
+ o<sub>5</sub> = 0.9933
+ w<sub>56</sub> = 1.5
]
.right-column[
+ Error for node 5
+ err<sub>5</sub> =
+ o<sub>5</sub>\*(1-o<sub>5</sub>)\*(err<sub>6</sub>*w<sub>56</sub>)
+ -0.0011326458827956695
+ Adjust weight w<sub>56</sub>
+ l = 10 # learn rate
+ w<sub>56</sub> =
+ w<sub>56</sub> + l\*err<sub>6</sub>\*o<sub>5</sub> =
+ 0.37298917134759924
.white-background[
<img src="img/ann8.png" width=80% />
]
]
---
## Terminate Learning
+ Changes in weights too small
+ Accuracy in training models is high
+ Maximum number iterations
+ Maximum time for learning
???
## Forward and Back
+ Guess, correct, guess, correct
+ Stop when you've got a good model
+ or you model is not improving
+ or when you're out of time
---
## *Break*
</textarea>
<script src="production/remark-0.5.9.min.js" type="text/javascript">
</script>
<script type="text/javascript">
var slideshow = remark.create();
</script>
</body>
</html>