-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path2014-03-06-Clustering.html
506 lines (391 loc) · 10.9 KB
/
2014-03-06-Clustering.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
<!DOCTYPE html>
<html>
<head>
<title>Data Mining</title>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>
<style type="text/css">
@import url(http://fonts.googleapis.com/css?family=Droid+Serif);
@import url(http://fonts.googleapis.com/css?family=Yanone+Kaffeesatz);
body {
font-family: 'Droid Serif';
font-size: 25px;
}
.remark-slide-content {
padding: 1em 2em 1em 2em;
}
h1, h2, h3 {
font-family: 'Yanone Kaffeesatz';
font-weight: 400;
margin-top: 0;
margin-bottom: 0;
}
h1 { font-size: 3em; }
h2 { font-size: 1.8em; }
h3 { font-size: 1.4em; }
.footnote {
position: absolute;
bottom: 3em;
}
ul { margin: 8px;}
li p { line-height: 1.25em; }
.red { color: #fa0000; }
.large { font-size: 2em; }
a, a > code {
color: rgb(249, 38, 114);
text-decoration: none;
}
code {
-moz-border-radius: 3px;
-web-border-radius: 3px;
background: #e7e8e2;
color: black;
border-radius: 3px;
}
.tight-code {
font-size: 20px;
}
.white-background {
background-color: white;
padding: 10px;
display: block;
margin-left: auto;
margin-right: auto;
}
.limit-size img {
height: auto;
width: auto;
max-width: 1000px;
max-height: 500px;
}
em { color: #80cafa; }
.pull-left {
float: left;
width: 47%;
}
.pull-right {
float: right;
width: 47%;
}
.pull-right ~ p {
clear: both;
}
#slideshow .slide .content code {
font-size: 1.6em;
}
#slideshow .slide .content pre code {
font-size: 1.6em;
padding: 15px;
}
.inverse {
background: #272822;
color: #e3e3e3;
text-shadow: 0 0 20px #333;
}
.inverse h1, .inverse h2 {
color: #f3f3f3;
line-height: 1.6em;
}
/* Slide-specific styling */
#slide-inverse .footnote {
bottom: 12px;
left: 20px;
}
#slide-how .slides {
font-size: 1.6em;
position: absolute;
top: 151px;
right: 140px;
}
#slide-how .slides h3 {
margin-top: 0.2em;
}
#slide-how .slides .first, #slide-how .slides .second {
padding: 1px 20px;
height: 90px;
width: 120px;
-moz-box-shadow: 0 0 10px #777;
-webkit-box-shadow: 0 0 10px #777;
box-shadow: 0 0 10px #777;
}
#slide-how .slides .first {
background: #fff;
position: absolute;
top: 20%;
left: 20%;
z-index: 1;
}
#slide-how .slides .second {
position: relative;
background: #fff;
z-index: 0;
}
.center {
float: center;
}
/* Two-column layout */
.left-column {
width: 48%;
float: left;
}
.right-column {
width: 48%;
float: right;
}
.right-column img {
max-width: 120%;
max-height: 120%;
}
/* Tables */
table {
border-collapse: collapse;
margin: 0px;
}
table, th, td {
border: 1px solid white;
}
th, td {
padding: 7px;
}
</style>
</head>
<body>
<textarea id="source">
name: inverse
layout: true
class: left, top, inverse
---
# Clustering
---
## Types of Models
+ Classifiers
+ Regressions
+ *Clustering*
+ Outlier
???
## Details
+ Classifiers
+ describes and distinguishes cases. Yelp may want to find a
category for a business based on the reviews and business description
+ Regressions
+ Predict a continuous value. Eg. predict a home's selling
price given sq footage, # of bedrooms
+ Clustering
+ find "natural" groups of data *without labels*
+ Outlier
+ find anomalous transactions, eg. finding fraud for credit cards
---
## Clustering
+ Group together similar items
+ Separate dissimilar items
+ Automatically discover groups without providing labels
???
## Perspectives
+ Similar items: again, metrics of similarity critical in defining these
groups
+ Marking boundaries between different classes
+ Type of groups unknown before hand. Out of many attributes, what tend to be
shared?
---
## Machine Learning
+ Supervised
+ Unsupervised
+ Semi-supervised
+ Active
???
## Definitions
+ Supervised
+ Given data with a label, predict data without a
label
+ Unsupervised
+ Given data without labels, group "similar" items
together
+ Semi-supervised
+ Mix of the above: e.g., unsupervised to find groups,
supervised to label and distinguish borderline cases
+ Active
+ Starting with unlabeled data, select the most helpful cases for a
human to label
---
## Clustering Applications
+ Gain insight into how data is distributed
+ Discover outliers
+ Preprocessing step to bootstrap labeling
???
## Apps
+ Closest we have to "magic box": put structured data in, see what groups may
exist
+ You want labeled data, but where to start? How many classes? What to name
them?
+ Cluster data, investigate examples.
+ Hand label exemplary cases
+ Choose names that distinguish groups
+ Run classifier on labeled data, compare with clustering, examine errors,
repeat
---
## Yelp Examples
+ User groups based on usage, reviewing habits, feature adoption
+ Businesses: when should a new category be created, what should it be called?
+ Reviews: for a particular business, are there common themes. Show better
variety?
???
## Examples
+ User groups may be trend spotters, "lurkers", travelers, early adopters
+ Do we need a New American and American category? How similar are these
categories?
+ Does a reviewer need to read 10 reviews about great food, so-so service?
Maybe providing different view points helps give a better picture
---
## Intuition
+ Intuition => Mathematical Expression => Solution => Evaluation
+ High intra-class similarity
+ Low inter-class similarity
+ Interpretable
???
## Good Clusters
+ Just like all data mining, needs to be used to take action
+ Can't take action if you don't understand the results
+ Trade-offs: testing shows it works, but you don't understand it
---
## Methods
+ Partitioning
+ Construct ```k``` groups, evaluate fitness, improve groups
+ Hierarchical
+ Agglomerate items into groups, creating "bottom-up" clusters; or divide set into ever smaller groups, creating "top-down" clusters
+ Density
+ Find groups by examining continuous density within a potential
group
+ Grid
+ Chunk space into units, cluster units instead of individual records
???
## Algorithms
+ Partitioning
+ Method similar to gradient descent: find some grouping,
evaluate it, improve it somehow, repeat. k-means.
+ Hierarchical
+ Build groups 1 "join" at a time, examining distance between
two things that can be joined together, if close, combine groups. Reverse:
divisive.
+ Density
+ Many of the above methods just look for distance. This method
tries to find groups that might be strung out, but maintain a density. Think
about an asteroid belt. It is one group, but not clustered together in a way
you typically think.
+ Grid
+ Can speed up clustering and provide similar results
---
## k-means
+ Start: Randomly pick ```k``` centers for clusters
+ Repeat:
+ Assign all other points to their closest cluster
+ Recalculate the center of the cluster
???
## Iterative
+ Start at a random point, find step in right direction, take step,
re-evaluate
---
## Example
<img src="img/kmeansclustering.jpg" width=110% />
???
## Process
+ We pick some nodes at random, mark with a cross
+ Find other points that are closest to the crosses
+ Find new *centroid* based on the average of all points
+ Start again
+ img: http://apandre.wordpress.com/visible-data/cluster-analysis/
---
## Distance
+ *Centroid* is the average of all points in a cluster; the center
+ Different distance metrics for real numbers
+ But how to find "average" of binary or nominal data?
???
## You Can't
+ k-means is used for numerical data
---
## Normalization
+ Cluster cities by average temperature and population attributes
+ ```<x,y> = <temperature, population>```
+ Using Euclidean distance, which attribute will affect similarity more?
???
## Un-normalized
+ Population: it is a much bigger number, will contribute much more to
distance
+ Artificially inflating importance just because units are different
---
## Normalization Techniques
+ Z-score
+ ```(v - mean) / stddev```
+ Min-max
+ ```(v - min) / (max - min)```
+ Decimal
+ ```* 10^n``` or ```/ 10^n```
+ Square
+ ```x**2```
+ Log
+ ```log(x)```
???
## Useful for?
+ Z-score
+ 1-pass normalization, retaining information about stdev
+ Min-max
+ keep within expected range, usually [0-1]
+ Decimal
+ easy to apply
+ Square
+ keep inputs positive
+ Log
+ de-emphasize differences between large numbers
---
## Local Optima
<img src="img/k-means-local.png" width=100% />
???
## No Guarantee
+ Since there are many possible stable centers, we may not end up at the best
one
+ How can we improve our odds of finding a good separation?
+ Why did we end up here? starting points
+ Choose different starting points
+ Compare results
+ Other problems? Mouse
---
## Uneven Groups
<img src="img/k-means-mouse.png" width=80% />
???
## k-means
+ k-means is good for similarly sized groups, or at least groups that are
similar distance between other members
+ Other problems that would pull the centroid away from the real groups?
+ Outliers
+ img: http://en.wikipedia.org/wiki/K-means_clustering
---
## Medoids
+ Instead of finding a *centroid* find a *medoid*
+ Medoid: actual data point that represents median of the cluster
+ PAM: Partitioning Around Medoids
???
## Trade-offs
+ PAM more expensive to evaluate
+ Scales poorly, since we need to evaluate many more medoids with many more
points
---
## Example
<img src="img/k-medoids.png" width=100% />
???
## Stability
+ No stability between real clusters
+ Outliers can't pull centroid far out of actual cluster
+ img: http://en.wikipedia.org/wiki/K-medoids
---
# *Break*
+ Do not confuse Medoid with Metroid
<img src="img/screenshot_metroid2.jpg" width=70% />
???
## Note
+ img: http://stealthboy.com/~msherman/metroid.html
</textarea>
<script src="production/remark-0.5.9.min.js" type="text/javascript">
</script>
<script type="text/javascript">
var slideshow = remark.create();
</script>
</body>
</html>