-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path2014-03-06-Hierarchical.html
445 lines (341 loc) · 9.46 KB
/
2014-03-06-Hierarchical.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
<!DOCTYPE html>
<html>
<head>
<title>Data Mining</title>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>
<style type="text/css">
@import url(http://fonts.googleapis.com/css?family=Droid+Serif);
@import url(http://fonts.googleapis.com/css?family=Yanone+Kaffeesatz);
body {
font-family: 'Droid Serif';
font-size: 25px;
}
.remark-slide-content {
padding: 1em 2em 1em 2em;
}
h1, h2, h3 {
font-family: 'Yanone Kaffeesatz';
font-weight: 400;
margin-top: 0;
margin-bottom: 0;
}
h1 { font-size: 3em; }
h2 { font-size: 1.8em; }
h3 { font-size: 1.4em; }
.footnote {
position: absolute;
bottom: 3em;
}
ul { margin: 8px;}
li p { line-height: 1.25em; }
.red { color: #fa0000; }
.large { font-size: 2em; }
a, a > code {
color: rgb(249, 38, 114);
text-decoration: none;
}
code {
-moz-border-radius: 3px;
-web-border-radius: 3px;
background: #e7e8e2;
color: black;
border-radius: 3px;
}
.tight-code {
font-size: 20px;
}
.white-background {
background-color: white;
padding: 10px;
display: block;
margin-left: auto;
margin-right: auto;
}
.limit-size img {
height: auto;
width: auto;
max-width: 1000px;
max-height: 500px;
}
em { color: #80cafa; }
.pull-left {
float: left;
width: 47%;
}
.pull-right {
float: right;
width: 47%;
}
.pull-right ~ p {
clear: both;
}
#slideshow .slide .content code {
font-size: 1.6em;
}
#slideshow .slide .content pre code {
font-size: 1.6em;
padding: 15px;
}
.inverse {
background: #272822;
color: #e3e3e3;
text-shadow: 0 0 20px #333;
}
.inverse h1, .inverse h2 {
color: #f3f3f3;
line-height: 1.6em;
}
/* Slide-specific styling */
#slide-inverse .footnote {
bottom: 12px;
left: 20px;
}
#slide-how .slides {
font-size: 1.6em;
position: absolute;
top: 151px;
right: 140px;
}
#slide-how .slides h3 {
margin-top: 0.2em;
}
#slide-how .slides .first, #slide-how .slides .second {
padding: 1px 20px;
height: 90px;
width: 120px;
-moz-box-shadow: 0 0 10px #777;
-webkit-box-shadow: 0 0 10px #777;
box-shadow: 0 0 10px #777;
}
#slide-how .slides .first {
background: #fff;
position: absolute;
top: 20%;
left: 20%;
z-index: 1;
}
#slide-how .slides .second {
position: relative;
background: #fff;
z-index: 0;
}
.center {
float: center;
}
/* Two-column layout */
.left-column {
width: 48%;
float: left;
}
.right-column {
width: 48%;
float: right;
}
.right-column img {
max-width: 120%;
max-height: 120%;
}
/* Tables */
table {
border-collapse: collapse;
margin: 0px;
}
table, th, td {
border: 1px solid white;
}
th, td {
padding: 7px;
}
</style>
</head>
<body>
<textarea id="source">
name: inverse
layout: true
class: left, top, inverse
---
# Hierarchical & Density
---
## Methods
+ Partitioning
+ Construct ```k``` groups, evaluate fitness, improve groups
+ Hierarchical
+ Agglomerate items into groups, creating "bottom-up"
clusters; or divide set into ever smaller groups, creating "top-down"
clusters
+ Density
+ Find groups by examining continuous density within a potential
group
+ Grid
+ Chunk space into units, cluster units instead of individual records
???
## Algorithms
+ Partitioning
+ k-means, k-medoid
+ Hierarchical
+ Build groups 1 "join" at a time, examining distance between
two things that can be joined together, if close, combine groups. Reverse:
divisive.
+ Density
+ Many of the above methods just look for distance. This method
tries to find groups that might be strung out, but maintain a density. Think
about an asteroid belt. It is one group, but not clustered together in a way
you typically think.
+ Grid
+ Read the book
---
## k-means Limitations
+ Must supply ```k```, the number of clusters
+ Clusters must be disjoint*
???
## Difference
+ *We'll learn about "fuzzy" clustering next time, where cluster membership
is a probability
---
## k-means Limitations
+ Must supply ```k```, the number of clusters
+ Clusters must be disjoint*
## Another Approach
+ Hierarchical clustering builds up clusters incrementally
???
## Difference
+ Hierarchical can find cluster of clusters
+ Can illustrate clusters at many levels, let human interpret what makes
sense without guess-and-check
+ Clusters are built 1 cluster at a time, starting with all points being
their own cluster
---
## Agglomerative
+ All points are separate clusters
+ Find closest clusters: Join them
+ Repeat
<img src="img/agglomerative.png" width=100% />
???
## Bottom-up
+ Any questions about this?
+ What does "close" mean?
---
## Cluster Distance
+ Minimum
+ Use the two closest points
+ Maximum
+ Use the two farthest points
+ Mean
+ Use the mean of the two clusters
+ Average
+ Sum of the distances of all pairs, divided by number of pairs
???
## Meta Distance
+ These are actually distance metrics for clusters that translate down to
distance metrics for points.
+ Still need to decide distance measures for points: Euclidean, Manhattan,
etc. And that's just for numerical distance
+ Choose based on expected cluster topology, cross validation testing using
human observers
---
## Termination
+ Define have ```k``` clusters
+ Distance between clusters exceeds threshold
+ Fitness function for cluster
???
## Details
+ If you wanted to look at all potential ```k```, set ```k = 1```, then look at sub
clusters
+ Distance or fitness function (eg. density or minimum intra-cluster
similarity score) can help define ```k``` automatically
---
## Dendrogram
+ Display of clustered groups
+ Concise visualization: groups do not need to be identified or named
+ Y axis can represent iteration
<img src="img/dendrogram.png" width=100% />
???
## Usefulness
+ Can move up and down clustering to make sense of individual clusters
---
## Chameleon
+ Discover large number of small clusters
+ Group together small clusters
+ Join clusters with a high interconnectedness relative to their existing
interconnectedness
<img src="img/chameleon.png" width=105% />
???
## Details
+ Mix of partition & agglomerative
+ Partition by finding groups of k-nearest neighbors: A, B in the same group
if A is a k-nearest neighbor of B.
+ Interconnectedness measured by aggregate proximity in the group, or using a
network model the book provides details on (10.3.4)
---
## Results
<img src="img/chameleon-cluster.png" width=100% />
???
## Properties
+ Tends to "follow" clusters as long as interconnectedness stays high
---
## Density: DBSCAN
+ Find "paths" of points that are in "dense" regions
+ Paths: points within a distance ```e```
+ Density: surrounded by ```MinPts``` within region of radius ```e```
<img src="img/density-connected.png" width=90% />
???
## Details
+ Can find non linear "paths" to follow as long as they stay dense
---
## Density Trade-offs
.left-column[
+ Finds clusters of different sizes, shapes
+ DBSCAN is sensitive to the parameters used. How big is ```e```? How many
points is "dense"?
]
.right-column[
.white-background[
<img src="img/DBSCAN.png" width=100% />
]
]
???
## Details
+ img: http://en.wikipedia.org/wiki/DBSCAN
---
## Algorithm Choice
+ Simple techniques often work surprisingly well
+ Choose other algorithms to tackle specific problems
+ Evaluation metrics
???
## Lessons
+ Just like Naive Bayes, we make assumptions about our data that turn out
to be right enough: clusters are uniformly sized, don't wander around our
dimensioned space
+ Topic drift: tendency for a cluster to change its properties slowly over
time: e.g., articles on politics might use different words
+ Performance: many of these algorithms are computationally expensive, hard to
distribute. Book goes into run times and where to make compromises on the
algorithm
+ Figure out a fitness function for your metric. If you used these clusters
to take action, what would be the result?
---
## Elbow Method
+ Calculate intra-cluster variance
+ Compare to data set variance (F-test)
+ Find point where marginal gain of explicative power decreases
<img src="img/elbow.JPG" width=70% />
---
## Labels
+ Clustering is an example of unsupervised learning
+ But after clustering, humans can label clusters, and their contents
+ Now one can use homogeneity metrics to evaluate clusters
???
## Homogeneity
+ Gini Index
+ Entropy
+ Precision / Recall
---
# *Break*
</textarea>
<script src="production/remark-0.5.9.min.js" type="text/javascript">
</script>
<script type="text/javascript">
var slideshow = remark.create();
</script>
</body>
</html>