-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgesture_recognition.py
231 lines (94 loc) · 3.87 KB
/
gesture_recognition.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
import sys
import numpy as np
import cv2
import mediapipe as mp
import time
import warnings
import logging
# Configure logging to write to a file instead of the console
logging.basicConfig(filename='gesture_recognition.log', level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s')
# Suppress TensorFlow warnings
warnings.filterwarnings('ignore', category=FutureWarning)
import tensorflow as tf
tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.ERROR)
class GestureRecognizer:
def __init__(self):
self.mp_hands = mp.solutions.hands
self.mp_drawing = mp.solutions.drawing_utils
self.mp_drawing_styles = mp.solutions.drawing_styles
self.hands = self.mp_hands.Hands(
model_complexity=0,
min_detection_confidence=0.5,
min_tracking_confidence=0.5)
self.last_process_time = time.time()
self.first_frame = True
def process_frame(self, frame):
if self.first_frame:
logging.info(f"Processing first frame: shape={frame.shape}, dtype={frame.dtype}")
logging.info(f"First few pixels: {frame[:5, 0, :]}")
self.first_frame = False
if frame is None or frame.size == 0:
return "No gesture", frame
results = self.hands.process(frame)
if results.multi_hand_landmarks:
for hand_landmarks in results.multi_hand_landmarks:
self.mp_drawing.draw_landmarks(
frame,
hand_landmarks,
self.mp_hands.HAND_CONNECTIONS,
self.mp_drawing_styles.get_default_hand_landmarks_style(),
self.mp_drawing_styles.get_default_hand_connections_style())
gesture = self.recognize_gesture(results)
return gesture, frame
def recognize_gesture(self, results):
if results.multi_hand_landmarks:
for hand_landmarks in results.multi_hand_landmarks:
hand = 0 if hand_landmarks.landmark[self.mp_hands.HandLandmark.WRIST].x < 0.5 else 1
fingers = self.fingersUp(hand_landmarks.landmark, hand)
gesture = self.findSymbol(fingers)
return gesture
return "No gesture"
def fingersUp(self, lmList, hand):
tipIds = [4, 8, 12, 16, 20]
fingers = []
# Thumb
if hand == 0: # left hand
fingers.append(1 if lmList[tipIds[0]].x > lmList[tipIds[0] - 1].x else 0)
else: # right hand
fingers.append(1 if lmList[tipIds[0]].x < lmList[tipIds[0] - 1].x else 0)
# 4 Fingers
for id in range(1, 5):
if lmList[tipIds[id]].y < lmList[tipIds[id] - 2].y:
fingers.append(1)
else:
fingers.append(0)
return fingers
def findSymbol(self, fingers):
if fingers == [0, 0, 0, 0, 0]:
return "Rock"
elif fingers == [1, 1, 1, 1, 1]:
return "Paper"
elif fingers == [0, 1, 1, 0, 0]:
return "Scissors"
else:
return "No gesture"
# Global GestureRecognizer instance
recognizer = None
def initialize():
global recognizer
if recognizer is None:
recognizer = GestureRecognizer()
logging.info("GestureRecognizer initialized")
def process_frame(frame_data, width, height):
global recognizer
if recognizer is None:
initialize()
frame = np.frombuffer(frame_data, dtype=np.uint8).reshape((height, width, 3))
if frame.size == 0:
logging.warning("Received empty frame")
return "No gesture", frame_data
gesture, processed_frame = recognizer.process_frame(frame)
return gesture, processed_frame.tobytes()
# Initialize the global instance when the module is imported
initialize()