-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_boston_nn.py
150 lines (119 loc) · 5.57 KB
/
run_boston_nn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
import numpy as np
import torch
from torch import nn
from torch.autograd import Variable
import torch.utils.data
import torch.nn.functional
from sklearn.datasets import load_boston
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import mean_squared_error
from sklearn.metrics import r2_score
class Model(torch.nn.Module):
def __init__(self, input_dim, output_dim, hidden_layers=1, hidden_dim=25):
super(Model, self).__init__()
self.linear_input = torch.nn.Linear(input_dim, hidden_dim)
self.hidden_layers = torch.nn.ModuleList()
self.num_hidden_layers = hidden_layers
for i in range(hidden_layers):
self.hidden_layers.append(torch.nn.Linear(hidden_dim, hidden_dim))
self.linear_output = torch.nn.Linear(hidden_dim, output_dim)
def forward(self, x):
x = self.linear_input(x)
x = torch.nn.functional.tanh(x)
for i in range(self.num_hidden_layers):
x = self.hidden_layers[i](x)
x = torch.nn.functional.tanh(x)
x = self.linear_output(x)
y_pred = x
return y_pred
class NNR:
def __init__(self, input_dim, output_dim, hidden_dim=25, hidden_layers=1):
self._model = Model(input_dim, output_dim, hidden_layers=hidden_layers, hidden_dim=hidden_dim)
self._criterion = nn.MSELoss()
self._fit_params = dict(lr=0.001, epochs=100, batch_size=64)
self._optimizer = torch.optim.SGD(self._model.parameters(), lr=self._fit_params['lr'])
self._losses = None
self._accuracy = None
def __repr__(self):
num = 0
for k, p in self._model.named_parameters():
numlist = list(p.data.numpy().shape)
if len(numlist) == 2:
num += numlist[0] * numlist[1]
else:
num += numlist[0]
return repr(self._model) + "\n" + repr(self._fit_params) + "\nNum Params: {}".format(num)
def fit(self, X, y):
# our loss function is cross entropy loss
# criterion = torch.nn.CrossEntropyLoss(size_average=True)
# we are optimizing with SGD with a learning rate of 0.01
# optimizer = torch.optim.SGD(model.parameters(), lr=0.1, weight_decay=0.1)
train_dataset = torch.utils.data.TensorDataset(torch.from_numpy(X), torch.from_numpy(y))
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=self._fit_params['batch_size'])
losses = [] # where we'll be storing loss calculations
batches = 0 # where we'll count the total number of batches
accuracy = [] # keep track of validation accuracy
# Training loop
for epoch in range(self._fit_params['epochs']):
for i, data in enumerate(train_loader, 0):
# Forward pass: Compute predicted y by passing x to the model
predictors, labels = data
predictors, labels = Variable(predictors.float()), Variable(labels.float())
pred = self._model.forward(predictors)
# Compute and store, print loss every 100 cycles
loss = self._criterion(pred, labels)
if i % 100 == 0:
# print(epoch, i, loss.data[0])
losses.append([batches, loss.data[0]])
batches += 100
# Zero gradients, perform a backward pass, and update the weights.
self._optimizer.zero_grad()
loss.backward()
self._optimizer.step()
accuracy.append([epoch, self.test_accuracy(X, y)])
# save losses and accuracy as model trains
self._losses = np.array(losses).T
self._accuracy = np.array(accuracy).T
def test_accuracy(self, X, y):
y_hat = self.predict(X)
mse = mean_squared_error(y, y_hat)
return mse
def set_fit_params(self, *, lr=0.001, epochs=100, batch_size=64, l2_weight=0):
self._fit_params['batch_size'] = batch_size
self._fit_params['epochs'] = epochs
self._fit_params['lr'] = lr
self._fit_params['l2_weight'] = l2_weight
self._optimizer = torch.optim.SGD(self._model.parameters(), lr=self._fit_params['lr'],
weight_decay=self._fit_params['l2_weight'])
def predict(self, X):
X = Variable(torch.from_numpy(X).float())
pred = self._model.forward(X)
return pred.data.numpy()
def score(self, X, y):
y_hat = self.predict(X)
r2 = r2_score(y, y_hat)
return r2
def run_nn_eval(hidden_dim=25, hidden_layers=8):
boston = load_boston()
# split into test and training data
X_train, X_test, y_train, y_test = train_test_split(boston.data, boston.target, random_state=444, test_size=.25)
# scale each predictor to be zero mean and unit variance
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
y_train = y_train.reshape(-1, 1)
# don't leak into test data
X_test = scaler.transform(X_test)
y_test = y_test.reshape(-1, 1)
boston_nnr = NNR(13, 1, hidden_dim=hidden_dim, hidden_layers=hidden_layers)
boston_nnr.fit(X_train, y_train)
train_mse = boston_nnr.test_accuracy(X_train, y_train)
train_r2 = boston_nnr.score(X_train, y_train)
print('Train MSE: {:.3f}\tTrain R2: {:.3f}'.format(train_mse, train_r2))
test_mse = boston_nnr.test_accuracy(X_test, y_test)
test_r2 = boston_nnr.score(X_test, y_test)
print('Test MSE: {:.3f}\tTest R2: {:.3f}'.format(test_mse, test_r2))
def main():
run_nn_eval()
if __name__ == '__main__':
main()