-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathsha256.c
321 lines (283 loc) · 10.9 KB
/
sha256.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
/* MIT (BSD) license - see LICENSE file for details */
/* SHA256 core code translated from the Bitcoin project's C++:
*
* src/crypto/sha256.cpp commit 417532c8acb93c36c2b6fd052b7c11b6a2906aa2
* Copyright (c) 2014 The Bitcoin Core developers
* Distributed under the MIT software license, see the accompanying
* file COPYING or http://www.opensource.org/licenses/mit-license.php.
*/
#include "sha256.h"
#include "endian.h"
#include "compiler.h"
#include <stdbool.h>
#include <assert.h>
#include <string.h>
static void invalidate_sha256(struct sha256_ctx *ctx)
{
#ifdef CCAN_CRYPTO_SHA256_USE_OPENSSL
ctx->c.md_len = 0;
#else
ctx->bytes = (size_t)-1;
#endif
}
static void check_sha256(struct sha256_ctx *ctx)
{
#ifdef CCAN_CRYPTO_SHA256_USE_OPENSSL
assert(ctx->c.md_len != 0);
#else
assert(ctx->bytes != (size_t)-1);
#endif
}
#ifdef CCAN_CRYPTO_SHA256_USE_OPENSSL
void sha256_init(struct sha256_ctx *ctx)
{
SHA256_Init(&ctx->c);
}
void sha256_update(struct sha256_ctx *ctx, const void *p, size_t size)
{
check_sha256(ctx);
SHA256_Update(&ctx->c, p, size);
}
void sha256_done(struct sha256_ctx *ctx, struct sha256 *res)
{
SHA256_Final(res->u.u8, &ctx->c);
invalidate_sha256(ctx);
}
#else
static uint32_t Ch(uint32_t x, uint32_t y, uint32_t z)
{
return z ^ (x & (y ^ z));
}
static uint32_t Maj(uint32_t x, uint32_t y, uint32_t z)
{
return (x & y) | (z & (x | y));
}
static uint32_t Sigma0(uint32_t x)
{
return (x >> 2 | x << 30) ^ (x >> 13 | x << 19) ^ (x >> 22 | x << 10);
}
static uint32_t Sigma1(uint32_t x)
{
return (x >> 6 | x << 26) ^ (x >> 11 | x << 21) ^ (x >> 25 | x << 7);
}
static uint32_t sigma0(uint32_t x)
{
return (x >> 7 | x << 25) ^ (x >> 18 | x << 14) ^ (x >> 3);
}
static uint32_t sigma1(uint32_t x)
{
return (x >> 17 | x << 15) ^ (x >> 19 | x << 13) ^ (x >> 10);
}
/** One round of SHA-256. */
static void Round(uint32_t a, uint32_t b, uint32_t c, uint32_t *d, uint32_t e, uint32_t f, uint32_t g, uint32_t *h, uint32_t k, uint32_t w)
{
uint32_t t1 = *h + Sigma1(e) + Ch(e, f, g) + k + w;
uint32_t t2 = Sigma0(a) + Maj(a, b, c);
*d += t1;
*h = t1 + t2;
}
/** Perform one SHA-256 transformation, processing a 64-byte chunk. */
static void Transform(uint32_t *s, const uint32_t *chunk)
{
uint32_t a = s[0], b = s[1], c = s[2], d = s[3], e = s[4], f = s[5], g = s[6], h = s[7];
uint32_t w0, w1, w2, w3, w4, w5, w6, w7, w8, w9, w10, w11, w12, w13, w14, w15;
Round(a, b, c, &d, e, f, g, &h, 0x428a2f98, w0 = be32_to_cpu(chunk[0]));
Round(h, a, b, &c, d, e, f, &g, 0x71374491, w1 = be32_to_cpu(chunk[1]));
Round(g, h, a, &b, c, d, e, &f, 0xb5c0fbcf, w2 = be32_to_cpu(chunk[2]));
Round(f, g, h, &a, b, c, d, &e, 0xe9b5dba5, w3 = be32_to_cpu(chunk[3]));
Round(e, f, g, &h, a, b, c, &d, 0x3956c25b, w4 = be32_to_cpu(chunk[4]));
Round(d, e, f, &g, h, a, b, &c, 0x59f111f1, w5 = be32_to_cpu(chunk[5]));
Round(c, d, e, &f, g, h, a, &b, 0x923f82a4, w6 = be32_to_cpu(chunk[6]));
Round(b, c, d, &e, f, g, h, &a, 0xab1c5ed5, w7 = be32_to_cpu(chunk[7]));
Round(a, b, c, &d, e, f, g, &h, 0xd807aa98, w8 = be32_to_cpu(chunk[8]));
Round(h, a, b, &c, d, e, f, &g, 0x12835b01, w9 = be32_to_cpu(chunk[9]));
Round(g, h, a, &b, c, d, e, &f, 0x243185be, w10 = be32_to_cpu(chunk[10]));
Round(f, g, h, &a, b, c, d, &e, 0x550c7dc3, w11 = be32_to_cpu(chunk[11]));
Round(e, f, g, &h, a, b, c, &d, 0x72be5d74, w12 = be32_to_cpu(chunk[12]));
Round(d, e, f, &g, h, a, b, &c, 0x80deb1fe, w13 = be32_to_cpu(chunk[13]));
Round(c, d, e, &f, g, h, a, &b, 0x9bdc06a7, w14 = be32_to_cpu(chunk[14]));
Round(b, c, d, &e, f, g, h, &a, 0xc19bf174, w15 = be32_to_cpu(chunk[15]));
Round(a, b, c, &d, e, f, g, &h, 0xe49b69c1, w0 += sigma1(w14) + w9 + sigma0(w1));
Round(h, a, b, &c, d, e, f, &g, 0xefbe4786, w1 += sigma1(w15) + w10 + sigma0(w2));
Round(g, h, a, &b, c, d, e, &f, 0x0fc19dc6, w2 += sigma1(w0) + w11 + sigma0(w3));
Round(f, g, h, &a, b, c, d, &e, 0x240ca1cc, w3 += sigma1(w1) + w12 + sigma0(w4));
Round(e, f, g, &h, a, b, c, &d, 0x2de92c6f, w4 += sigma1(w2) + w13 + sigma0(w5));
Round(d, e, f, &g, h, a, b, &c, 0x4a7484aa, w5 += sigma1(w3) + w14 + sigma0(w6));
Round(c, d, e, &f, g, h, a, &b, 0x5cb0a9dc, w6 += sigma1(w4) + w15 + sigma0(w7));
Round(b, c, d, &e, f, g, h, &a, 0x76f988da, w7 += sigma1(w5) + w0 + sigma0(w8));
Round(a, b, c, &d, e, f, g, &h, 0x983e5152, w8 += sigma1(w6) + w1 + sigma0(w9));
Round(h, a, b, &c, d, e, f, &g, 0xa831c66d, w9 += sigma1(w7) + w2 + sigma0(w10));
Round(g, h, a, &b, c, d, e, &f, 0xb00327c8, w10 += sigma1(w8) + w3 + sigma0(w11));
Round(f, g, h, &a, b, c, d, &e, 0xbf597fc7, w11 += sigma1(w9) + w4 + sigma0(w12));
Round(e, f, g, &h, a, b, c, &d, 0xc6e00bf3, w12 += sigma1(w10) + w5 + sigma0(w13));
Round(d, e, f, &g, h, a, b, &c, 0xd5a79147, w13 += sigma1(w11) + w6 + sigma0(w14));
Round(c, d, e, &f, g, h, a, &b, 0x06ca6351, w14 += sigma1(w12) + w7 + sigma0(w15));
Round(b, c, d, &e, f, g, h, &a, 0x14292967, w15 += sigma1(w13) + w8 + sigma0(w0));
Round(a, b, c, &d, e, f, g, &h, 0x27b70a85, w0 += sigma1(w14) + w9 + sigma0(w1));
Round(h, a, b, &c, d, e, f, &g, 0x2e1b2138, w1 += sigma1(w15) + w10 + sigma0(w2));
Round(g, h, a, &b, c, d, e, &f, 0x4d2c6dfc, w2 += sigma1(w0) + w11 + sigma0(w3));
Round(f, g, h, &a, b, c, d, &e, 0x53380d13, w3 += sigma1(w1) + w12 + sigma0(w4));
Round(e, f, g, &h, a, b, c, &d, 0x650a7354, w4 += sigma1(w2) + w13 + sigma0(w5));
Round(d, e, f, &g, h, a, b, &c, 0x766a0abb, w5 += sigma1(w3) + w14 + sigma0(w6));
Round(c, d, e, &f, g, h, a, &b, 0x81c2c92e, w6 += sigma1(w4) + w15 + sigma0(w7));
Round(b, c, d, &e, f, g, h, &a, 0x92722c85, w7 += sigma1(w5) + w0 + sigma0(w8));
Round(a, b, c, &d, e, f, g, &h, 0xa2bfe8a1, w8 += sigma1(w6) + w1 + sigma0(w9));
Round(h, a, b, &c, d, e, f, &g, 0xa81a664b, w9 += sigma1(w7) + w2 + sigma0(w10));
Round(g, h, a, &b, c, d, e, &f, 0xc24b8b70, w10 += sigma1(w8) + w3 + sigma0(w11));
Round(f, g, h, &a, b, c, d, &e, 0xc76c51a3, w11 += sigma1(w9) + w4 + sigma0(w12));
Round(e, f, g, &h, a, b, c, &d, 0xd192e819, w12 += sigma1(w10) + w5 + sigma0(w13));
Round(d, e, f, &g, h, a, b, &c, 0xd6990624, w13 += sigma1(w11) + w6 + sigma0(w14));
Round(c, d, e, &f, g, h, a, &b, 0xf40e3585, w14 += sigma1(w12) + w7 + sigma0(w15));
Round(b, c, d, &e, f, g, h, &a, 0x106aa070, w15 += sigma1(w13) + w8 + sigma0(w0));
Round(a, b, c, &d, e, f, g, &h, 0x19a4c116, w0 += sigma1(w14) + w9 + sigma0(w1));
Round(h, a, b, &c, d, e, f, &g, 0x1e376c08, w1 += sigma1(w15) + w10 + sigma0(w2));
Round(g, h, a, &b, c, d, e, &f, 0x2748774c, w2 += sigma1(w0) + w11 + sigma0(w3));
Round(f, g, h, &a, b, c, d, &e, 0x34b0bcb5, w3 += sigma1(w1) + w12 + sigma0(w4));
Round(e, f, g, &h, a, b, c, &d, 0x391c0cb3, w4 += sigma1(w2) + w13 + sigma0(w5));
Round(d, e, f, &g, h, a, b, &c, 0x4ed8aa4a, w5 += sigma1(w3) + w14 + sigma0(w6));
Round(c, d, e, &f, g, h, a, &b, 0x5b9cca4f, w6 += sigma1(w4) + w15 + sigma0(w7));
Round(b, c, d, &e, f, g, h, &a, 0x682e6ff3, w7 += sigma1(w5) + w0 + sigma0(w8));
Round(a, b, c, &d, e, f, g, &h, 0x748f82ee, w8 += sigma1(w6) + w1 + sigma0(w9));
Round(h, a, b, &c, d, e, f, &g, 0x78a5636f, w9 += sigma1(w7) + w2 + sigma0(w10));
Round(g, h, a, &b, c, d, e, &f, 0x84c87814, w10 += sigma1(w8) + w3 + sigma0(w11));
Round(f, g, h, &a, b, c, d, &e, 0x8cc70208, w11 += sigma1(w9) + w4 + sigma0(w12));
Round(e, f, g, &h, a, b, c, &d, 0x90befffa, w12 += sigma1(w10) + w5 + sigma0(w13));
Round(d, e, f, &g, h, a, b, &c, 0xa4506ceb, w13 += sigma1(w11) + w6 + sigma0(w14));
Round(c, d, e, &f, g, h, a, &b, 0xbef9a3f7, w14 + sigma1(w12) + w7 + sigma0(w15));
Round(b, c, d, &e, f, g, h, &a, 0xc67178f2, w15 + sigma1(w13) + w8 + sigma0(w0));
s[0] += a;
s[1] += b;
s[2] += c;
s[3] += d;
s[4] += e;
s[5] += f;
s[6] += g;
s[7] += h;
}
static void add(struct sha256_ctx *ctx, const void *p, size_t len)
{
const unsigned char *data = p;
size_t bufsize = ctx->bytes % 64;
if (bufsize + len >= 64) {
/* Fill the buffer, and process it. */
memcpy(ctx->buf.u8 + bufsize, data, 64 - bufsize);
ctx->bytes += 64 - bufsize;
data += 64 - bufsize;
len -= 64 - bufsize;
Transform(ctx->s, ctx->buf.u32);
bufsize = 0;
}
while (len >= 64) {
/* Process full chunks directly from the source. */
if (alignment_ok(data, sizeof(uint32_t)))
Transform(ctx->s, (const uint32_t *)data);
else {
memcpy(ctx->buf.u8, data, sizeof(ctx->buf));
Transform(ctx->s, ctx->buf.u32);
}
ctx->bytes += 64;
data += 64;
len -= 64;
}
if (len) {
/* Fill the buffer with what remains. */
memcpy(ctx->buf.u8 + bufsize, data, len);
ctx->bytes += len;
}
}
void sha256_init(struct sha256_ctx *ctx)
{
struct sha256_ctx init = SHA256_INIT;
*ctx = init;
}
void sha256_update(struct sha256_ctx *ctx, const void *p, size_t size)
{
check_sha256(ctx);
add(ctx, p, size);
}
void sha256_done(struct sha256_ctx *ctx, struct sha256 *res)
{
static const unsigned char pad[64] = {0x80};
uint64_t sizedesc;
size_t i;
sizedesc = cpu_to_be64((uint64_t)ctx->bytes << 3);
/* Add '1' bit to terminate, then all 0 bits, up to next block - 8. */
add(ctx, pad, 1 + ((128 - 8 - (ctx->bytes % 64) - 1) % 64));
/* Add number of bits of data (big endian) */
add(ctx, &sizedesc, 8);
for (i = 0; i < sizeof(ctx->s) / sizeof(ctx->s[0]); i++)
res->u.u32[i] = cpu_to_be32(ctx->s[i]);
invalidate_sha256(ctx);
}
#endif
void sha256(struct sha256 *sha, const void *p, size_t size)
{
struct sha256_ctx ctx;
sha256_init(&ctx);
sha256_update(&ctx, p, size);
sha256_done(&ctx, sha);
}
void sha256_u8(struct sha256_ctx *ctx, uint8_t v)
{
sha256_update(ctx, &v, sizeof(v));
}
void sha256_u16(struct sha256_ctx *ctx, uint16_t v)
{
sha256_update(ctx, &v, sizeof(v));
}
void sha256_u32(struct sha256_ctx *ctx, uint32_t v)
{
sha256_update(ctx, &v, sizeof(v));
}
void sha256_u64(struct sha256_ctx *ctx, uint64_t v)
{
sha256_update(ctx, &v, sizeof(v));
}
/* Add as little-endian */
void sha256_le16(struct sha256_ctx *ctx, uint16_t v)
{
leint16_t lev = cpu_to_le16(v);
sha256_update(ctx, &lev, sizeof(lev));
}
void sha256_le32(struct sha256_ctx *ctx, uint32_t v)
{
leint32_t lev = cpu_to_le32(v);
sha256_update(ctx, &lev, sizeof(lev));
}
void sha256_le64(struct sha256_ctx *ctx, uint64_t v)
{
leint64_t lev = cpu_to_le64(v);
sha256_update(ctx, &lev, sizeof(lev));
}
/* Add as big-endian */
void sha256_be16(struct sha256_ctx *ctx, uint16_t v)
{
beint16_t bev = cpu_to_be16(v);
sha256_update(ctx, &bev, sizeof(bev));
}
void sha256_be32(struct sha256_ctx *ctx, uint32_t v)
{
beint32_t bev = cpu_to_be32(v);
sha256_update(ctx, &bev, sizeof(bev));
}
void sha256_be64(struct sha256_ctx *ctx, uint64_t v)
{
beint64_t bev = cpu_to_be64(v);
sha256_update(ctx, &bev, sizeof(bev));
}
int sha256d(const unsigned char *bytes, size_t bytes_len,
unsigned char *bytes_out, size_t len)
{
struct sha256 sha_1, sha_2;
bool aligned = alignment_ok(bytes_out, sizeof(sha_1.u.u32));
if (!bytes || !bytes_out || len != SHA256_LEN)
return 0;
sha256(&sha_1, bytes, bytes_len);
sha256(aligned ? (struct sha256 *)bytes_out : &sha_2, &sha_1, sizeof(sha_1));
if (!aligned) {
memcpy(bytes_out, &sha_2, sizeof(sha_2));
wally_clear(&sha_2, sizeof(sha_2));
}
wally_clear(&sha_1, sizeof(sha_1));
return 1;
}