-
Notifications
You must be signed in to change notification settings - Fork 35
/
Copy pathmain.py
81 lines (69 loc) · 3.47 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
import argparse, os, random
import torch
from torch.utils.data import DataLoader
from mosei_dataset import Mosei_Dataset
from meld_dataset import Meld_Dataset
from model_LA import Model_LA
from model_LAV import Model_LAV
from train import train
import numpy as np
from utils.compute_args import compute_args
def parse_args():
parser = argparse.ArgumentParser()
# Model
parser.add_argument('--model', type=str, default="Model_LA", choices=["Model_LA", "Model_LAV"])
parser.add_argument('--layer', type=int, default=4)
parser.add_argument('--hidden_size', type=int, default=512)
parser.add_argument('--dropout_r', type=float, default=0.1)
parser.add_argument('--multi_head', type=int, default=8)
parser.add_argument('--ff_size', type=int, default=2048)
parser.add_argument('--word_embed_size', type=int, default=300)
# Data
parser.add_argument('--lang_seq_len', type=int, default=60)
parser.add_argument('--audio_seq_len', type=int, default=60)
parser.add_argument('--video_seq_len', type=int, default=60)
parser.add_argument('--audio_feat_size', type=int, default=80)
parser.add_argument('--video_feat_size', type=int, default=512)
# Training
parser.add_argument('--output', type=str, default='ckpt/')
parser.add_argument('--name', type=str, default='exp0/')
parser.add_argument('--batch_size', type=int, default=64)
parser.add_argument('--max_epoch', type=int, default=99)
parser.add_argument('--opt', type=str, default="Adam")
parser.add_argument('--opt_params', type=str, default="{'betas': '(0.9, 0.98)', 'eps': '1e-9'}")
parser.add_argument('--lr_base', type=float, default=0.00005)
parser.add_argument('--lr_decay', type=float, default=0.5)
parser.add_argument('--lr_decay_times', type=int, default=2)
parser.add_argument('--warmup_epoch', type=float, default=0)
parser.add_argument('--grad_norm_clip', type=float, default=-1)
parser.add_argument('--eval_start', type=int, default=0)
parser.add_argument('--early_stop', type=int, default=3)
parser.add_argument('--seed', type=int, default=random.randint(0, 9999999))
# Dataset and task
parser.add_argument('--dataset', type=str, choices=['MELD', 'MOSEI'], default='MOSEI')
parser.add_argument('--task', type=str, choices=['sentiment', 'emotion'], default='sentiment')
parser.add_argument('--task_binary', type=bool, default=False)
args = parser.parse_args()
return args
if __name__ == '__main__':
# Base on args given, compute new args
args = compute_args(parse_args())
# Seed
torch.manual_seed(args.seed)
np.random.seed(args.seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
# DataLoader
train_dset = eval(args.dataloader)('train', args)
eval_dset = eval(args.dataloader)('valid', args, train_dset.token_to_ix)
train_loader = DataLoader(train_dset, args.batch_size, shuffle=True, num_workers=8, pin_memory=True)
eval_loader = DataLoader(eval_dset, args.batch_size, num_workers=8, pin_memory=True)
# Net
net = eval(args.model)(args, train_dset.vocab_size, train_dset.pretrained_emb).cuda()
print("Total number of parameters : " + str(sum([p.numel() for p in net.parameters()]) / 1e6) + "M")
net = net.cuda()
# Create Checkpoint dir
if not os.path.exists(os.path.join(args.output, args.name)):
os.makedirs(os.path.join(args.output, args.name))
# Run training
eval_accuracies = train(net, train_loader, eval_loader, args)