forked from dlang/dlang.org
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcppstrings.dd
583 lines (488 loc) · 13 KB
/
cppstrings.dd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
Ddoc
$(COMMUNITY D Strings vs C++ Strings,
Why have strings built-in to the core language of D rather than entirely in
a library as in C++ Strings? What's the point? Where's the improvement?
$(H4 Concatenation Operator)
$(P C++ Strings are stuck with overloading existing operators. The
obvious choice for concatenation is += and +.
But someone just looking at the code will see + and think "addition".
He'll have to look up the types (and types are frequently buried
behind multiple typedef's) to see that it's a string type, and
it's not adding strings but concatenating them.
)
$(P Additionally, if one has an array of floats, is $(SINGLEQUOTE +) overloaded to
be the same as a vector addition, or an array concatenation?
)
$(P In D, these problems are avoided by introducing a new binary
operator ~ as the concatenation operator. It works with
arrays (of which strings are a subset). ~= is the corresponding
append operator. ~ on arrays of floats would concatenate them,
+ would imply a vector add. Adding a new operator makes it possible
for orthogonality and consistency in the treatment of arrays.
(In D, strings are simply arrays of characters, not a special
type.)
)
$(H4 Interoperability With C String Syntax)
$(P Overloading of operators only really works if one of the operands
is overloadable. So the C++ string class cannot consistently
handle arbitrary expressions containing strings. Consider:
)
$(CCODE
const char abc[5] = "world";
string str = "hello" + abc;
)
$(P That isn't going to work. But it does work when the core language
knows about strings:
)
$(CCODE
const char[5] abc = "world";
char[] str = "hello" ~ abc;
)
$(H4 Consistency With C String Syntax)
$(P
There are three ways to find the length of a string in C++:
)
$(CCODE
const char abc[] = "world"; : sizeof(abc)/sizeof(abc[0])-1
: strlen(abc)
string str; : str.length()
)
$(P
That kind of inconsistency makes it hard to write generic templates.
Consider D:
)
-----------------------
char[5] abc = "world"; : abc.length
char[] str : str.length
-----------------------
$(H4 Checking For Empty Strings)
$(P
C++ strings use a function to determine if a string is empty:
)
$(CCODE
string str;
if (str.empty())
// string is empty
)
$(P
In D, an empty string has zero length:
)
-----------------------
char[] str;
if (!str.length)
// string is empty
-----------------------
$(H4 Resizing Existing String)
$(P
C++ handles this with the resize() member function:
)
$(CCODE
string str;
str.resize(newsize);
)
$(P
D takes advantage of knowing that str is an array, and
so resizing it is just changing the length property:
)
-----------------------
char[] str;
str.length = newsize;
-----------------------
$(H4 Slicing a String)
$(P
C++ slices an existing string using a special constructor:
)
$(CCODE
string s1 = "hello world";
string s2(s1, 6, 5); // s2 is "world"
)
$(P
D has the array slice syntax, not possible with C++:
)
-----------------------
string s1 = "hello world";
string s2 = s1[6 .. 11]; // s2 is "world"
-----------------------
$(P
Slicing, of course, works with any array in D, not just strings.
)
$(H4 Copying a String)
$(P
C++ copies strings with the replace function:
)
$(CCODE
string s1 = "hello world";
string s2 = "goodbye ";
s2.replace(8, 5, s1, 6, 5); // s2 is "goodbye world"
)
$(P
D uses the slice syntax as an lvalue:
)
-----------------------
char[] s1 = "hello world".dup;
char[] s2 = "goodbye ".dup;
s2[8..13] = s1[6..11]; // s2 is "goodbye world"
-----------------------
$(P The $(CODE .dup) is needed because string literals are
read-only in D, the $(CODE .dup) will create a copy
that is writable.
)
$(H4 Conversions to C Strings)
$(P
This is needed for compatibility with C API's. In C++, this
uses the c_str() member function:
)
$(CCODE
void foo(const char *);
string s1;
foo(s1.c_str());
)
$(P
In D, strings can be converted to char* using the .ptr property:
)
-----------------------
void foo(char*);
char[] s1;
foo(s1.ptr);
-----------------------
$(P although for this to work where $(D foo) expects a 0 terminated
string, $(D s1) must have a terminating 0. Alternatively, the
function $(D std.string.toStringz) will ensure it:)
-----------------------
void foo(char*);
char[] s1;
foo(std.string.$(B toStringz)(s1));
-----------------------
$(H4 Array Bounds Checking)
$(P
In C++, string array bounds checking for [] is not done.
In D, array bounds checking is on by default and it can be turned off
with a compiler switch after the program is debugged.
)
$(H4 String Switch Statements)
$(P
Are not possible in C++, nor is there any way to add them
by adding more to the library. In D, they take the obvious
syntactical forms:
)
-----------------------
switch (str)
{
case "hello":
case "world":
...
}
-----------------------
$(P
where str can be any of literal "string"s, fixed string arrays
like char[10], or dynamic strings like char[]. A quality implementation
can, of course, explore many strategies of efficiently implementing
this based on the contents of the case strings.
)
$(H4 Filling a String)
$(P
In C++, this is done with the replace() member function:
)
$(CCODE
string str = "hello";
str.replace(1,2,2,'?'); // str is "h??lo"
)
$(P
In D, use the array slicing syntax in the natural manner:
)
-----------------------
char[5] str = "hello";
str[1..3] = '?'; // str is "h??lo"
-----------------------
$(H4 Value vs Reference)
$(P
C++ strings, as implemented by STLport, are by value and are
0-terminated. [The latter is an implementation choice, but
STLport seems to be the most popular implementation.]
This, coupled with no garbage collection, has
some consequences. First of all, any string created must make
its own copy of the string data. The $(SINGLEQUOTE owner) of the string
data must be kept track of, because when the owner is deleted
all references become invalid. If one tries to avoid the
dangling reference problem by treating strings as value types,
there will be a lot of overhead of memory allocation,
data copying, and memory deallocation. Next, the 0-termination
implies that strings cannot refer to other strings. String
data in the data segment, stack, etc., cannot
be referred to.
)
$(P
D strings are reference types, and the memory is garbage collected.
This means that only references need to be copied, not the
string data. D strings can refer to data in the static data
segment, data on the stack, data inside other strings, objects,
file buffers, etc. There's no need to keep track of the $(SINGLEQUOTE owner)
of the string data.
)
$(P
The obvious question is if multiple D strings refer to the same
string data, what happens if the data is modified? All the
references will now point to the modified data. This can have
its own consequences, which can be avoided if the copy-on-write
convention is followed. All copy-on-write is is that if
a string is written to, an actual copy of the string data is made
first.
)
$(P
The result of D strings being reference only and garbage collected
is that code that does a lot of string manipulating, such as
an lzw compressor, can be a lot more efficient in terms of both
memory consumption and speed.
)
$(H2 Benchmark)
$(P
Let's take a look at a small utility, wordcount, that counts up
the frequency of each word in a text file. In D, it looks like this:
)
-----------------------
import std.file;
import std.stdio;
int main (char[][] args)
{
int w_total;
int l_total;
int c_total;
int[char[]] dictionary;
writeln(" lines words bytes file");
for (int i = 1; i < args.length; ++i)
{
char[] input;
int w_cnt, l_cnt, c_cnt;
int inword;
int wstart;
input = cast(char[])std.file.read(args[i]);
for (int j = 0; j < input.length; j++)
{ char c;
c = input[j];
if (c == '\n')
++l_cnt;
if (c >= '0' && c <= '9')
{
}
else if (c >= 'a' && c <= 'z' ||
c >= 'A' && c <= 'Z')
{
if (!inword)
{
wstart = j;
inword = 1;
++w_cnt;
}
}
else if (inword)
{ char[] word = input[wstart .. j];
dictionary[word]++;
inword = 0;
}
++c_cnt;
}
if (inword)
{ char[] w = input[wstart .. input.length];
dictionary[w]++;
}
writefln("%8s%8s%8s %s", l_cnt, w_cnt, c_cnt, args[i]);
l_total += l_cnt;
w_total += w_cnt;
c_total += c_cnt;
}
if (args.length > 2)
{
writefln("--------------------------------------%8s%8s%8s total",
l_total, w_total, c_total);
}
writeln("--------------------------------------");
foreach (char[] word1; dictionary.keys.sort)
{
writefln("%3d %s", dictionary[word1], word1);
}
return 0;
}
-----------------------
$(P (An $(LINK2 wc.html, alternate implementation) that
uses buffered file I/O to handle larger files.))
$(P
Two people have written C++ implementations using the C++ standard
template library,
<a href="http://groups.google.com/group/comp.lang.c++.moderated/msg/58b6b8710ecc82e9">wccpp1</a>
and
$(RELATIVE_LINK2 wccpp2, wccpp2).
The input file
$(LINK2 http://www.gutenberg.org/files/11/old/alice30.txt, alice30.txt)
is the text of "Alice in Wonderland."
The D compiler,
<a HREF="http://ftp.digitalmars.com/dmd.zip" title="download D compiler">dmd</a>,
and the C++ compiler,
<a HREF="http://ftp.digitalmars.com/dmc.zip" title="download dmc.zip">dmc</a>,
share the same
optimizer and code generator, which provides a more apples to
apples comparison of the efficiency of the semantics of the languages
rather than the optimization and code generator sophistication.
Tests were run on a Win XP machine. dmc uses STLport for the template
implementation.
)
$(TABLE1
$(TR
$(TH Program)
$(TH Compile)
$(TH Compile Time)
$(TH Run)
$(TH Run Time)
)
$(TR
$(TD D wc)
$(TD dmd wc -O -release)
$(TD 0.0719)
$(TD wc alice30.txt >log)
$(TD 0.0326)
)
$(TR
$(TD C++ wccpp1)
$(TD dmc wccpp1 -o -I\dm\stlport\stlport)
$(TD 2.1917)
$(TD wccpp1 alice30.txt >log)
$(TD 0.0944)
)
$(TR
$(TD C++ wccpp2)
$(TD dmc wccpp2 -o -I\dm\stlport\stlport)
$(TD 2.0463)
$(TD wccpp2 alice30.txt >log)
$(TD 0.1012)
)
)
$(P
The following tests were run on linux, again comparing a D compiler ($(B gdc))
and a C++ compiler ($(B g++)) that share a common optimizer and
code generator. The system is Pentium III 800MHz running RedHat Linux 8.0
and gcc 3.4.2.
The Digital Mars D compiler for linux ($(B dmd))
is included for comparison.
)
$(TABLE1
$(TR
$(TH Program)
$(TH Compile)
$(TH Compile Time)
$(TH Run)
$(TH Run Time)
)
$(TR
$(TD D wc)
$(TD gdc -O2 -frelease -o wc wc.d)
$(TD 0.326)
$(TD wc alice30.txt > /dev/null)
$(TD 0.041)
)
$(TR
$(TD D wc)
$(TD dmd wc -O -release)
$(TD 0.235)
$(TD wc alice30.txt > /dev/null)
$(TD 0.041)
)
$(TR
$(TD C++ wccpp1)
$(TD g++ -O2 -o wccpp1 wccpp1.cc)
$(TD 2.874)
$(TD wccpp1 alice30.txt > /dev/null)
$(TD 0.086)
)
$(TR
$(TD C++ wccpp2)
$(TD g++ -O2 -o wccpp2 wccpp2.cc)
$(TD 2.886)
$(TD wccpp2 alice30.txt > /dev/null)
$(TD 0.095)
)
)
$(P
These tests compare gdc with g++ on a PowerMac G5 2x2.0GHz
running MacOS X 10.3.5 and gcc 3.4.2. (Timings are a little
less accurate.)
)
$(TABLE1
$(TR
$(TH Program)
$(TH Compile)
$(TH Compile Time)
$(TH Run)
$(TH Run Time)
)
$(TR
$(TD D wc)
$(TD gdc -O2 -frelease -o wc wc.d)
$(TD 0.28)
$(TD wc alice30.txt > /dev/null)
$(TD 0.03)
)
$(TR
$(TD C++ wccpp1)
$(TD g++ -O2 -o wccpp1 wccpp1.cc)
$(TD 1.90)
$(TD wccpp1 alice30.txt > /dev/null)
$(TD 0.07)
)
$(TR
$(TD C++ wccpp2)
$(TD g++ -O2 -o wccpp2 wccpp2.cc)
$(TD 1.88)
$(TD wccpp2 alice30.txt > /dev/null)
$(TD 0.08)
)
)
<hr>
$(H4 <a name="wccpp2">wccpp2 by Allan Odgaard</a>)
$(CCODE
#include <algorithm>
#include <cstdio>
#include <fstream>
#include <iterator>
#include <map>
#include <vector>
bool isWordStartChar (char c) { return isalpha(c); }
bool isWordEndChar (char c) { return !isalnum(c); }
int main (int argc, char const* argv[])
{
using namespace std;
printf("Lines Words Bytes File:\n");
map<string, int> dict;
int tLines = 0, tWords = 0, tBytes = 0;
for(int i = 1; i < argc; i++)
{
ifstream file(argv[i]);
istreambuf_iterator<char> from(file.rdbuf()), to;
vector<char> v(from, to);
vector<char>::iterator first = v.begin(), last = v.end(), bow, eow;
int numLines = count(first, last, '\n');
int numWords = 0;
int numBytes = last - first;
for(eow = first; eow != last; )
{
bow = find_if(eow, last, isWordStartChar);
eow = find_if(bow, last, isWordEndChar);
if(bow != eow)
++dict[string(bow, eow)], ++numWords;
}
printf("%5d %5d %5d %s\n", numLines, numWords, numBytes, argv[i]);
tLines += numLines;
tWords += numWords;
tBytes += numBytes;
}
if(argc > 2)
printf("-----------------------\n%5d %5d %5d\n", tLines, tWords, tBytes);
printf("-----------------------\n\n");
for(map<string, int>::const_iterator it = dict.begin(); it != dict.end(); ++it)
printf("%5d %s\n", it->second, it->first.c_str());
return 0;
}
)
)
Macros:
TITLE=D Strings vs C++ Strings
WIKI=CPPstrings
CATEGORY_OVERVIEW=$0