From d2d8620fbe990a40e42029d977f79b208b916d29 Mon Sep 17 00:00:00 2001 From: "J. Derek Tucker" Date: Mon, 21 Jun 2021 14:51:03 -0600 Subject: [PATCH] spelling fixes --- R/elastic_lpcr_regression.R | 8 ++++---- R/elastic_mlpcr_regression.R | 8 ++++---- R/elastic_pcr_regression.R | 8 ++++---- R/function_group_warp_bayes.R | 2 +- R/joint_gauss_model.R | 2 +- R/jointfPCA.R | 6 +++--- R/pair_align_functions.R | 2 +- R/pair_align_functions_bayes.R | 2 +- R/predict.lpcr.R | 4 ++-- R/predict.mlpcr.R | 4 ++-- R/tolerance.R | 2 +- man/elastic.lpcr.regression.Rd | 8 ++++---- man/elastic.mlpcr.regression.Rd | 8 ++++---- man/elastic.pcr.regression.Rd | 8 ++++---- man/function_group_warp_bayes.Rd | 2 +- man/jointFPCA.Rd | 6 +++--- man/joint_gauss_model.Rd | 2 +- man/pair_align_functions.Rd | 2 +- man/pair_align_functions_bayes.Rd | 2 +- man/pcaTB.Rd | 2 +- man/predict.lpcr.Rd | 4 ++-- man/predict.mlpcr.Rd | 4 ++-- 22 files changed, 48 insertions(+), 48 deletions(-) diff --git a/R/elastic_lpcr_regression.R b/R/elastic_lpcr_regression.R index ac08080..4b27988 100644 --- a/R/elastic_lpcr_regression.R +++ b/R/elastic_lpcr_regression.R @@ -1,4 +1,4 @@ -#' Elastic Logisitc Prinipcal Component Regression +#' Elastic logistic Principal Component Regression #' #' This function identifies a logistic regression model with phase-variability #' using elastic pca @@ -6,9 +6,9 @@ #' @param f matrix (\eqn{N} x \eqn{M}) of \eqn{M} functions with \eqn{N} samples #' @param y vector of size \eqn{M} lables #' @param time vector of size \eqn{N} describing the sample points -#' @param pca.method string specifing pca method (options = "combined", +#' @param pca.method string specifying pca method (options = "combined", #' "vert", or "horiz", default = "combined") -#' @param no scalar specifify number of principal components (default=5) +#' @param no scalar specify number of principal components (default=5) #' @param smooth_data smooth data using box filter (default = F) #' @param sparam number of times to apply box filter (default = 25) #' @return Returns a lpcr object containing @@ -18,7 +18,7 @@ #' \item{warp_data}{fdawarp object of aligned data} #' \item{pca}{pca object of principal components} #' \item{Loss}{logistic loss} -#' \item{pca.method}{string specifing pca method used} +#' \item{pca.method}{string specifying pca method used} #' @keywords srvf alignment regression #' @references J. D. Tucker, J. R. Lewis, and A. Srivastava, “Elastic #' Functional Principal Component Regression,” Statistical Analysis and Data diff --git a/R/elastic_mlpcr_regression.R b/R/elastic_mlpcr_regression.R index 61528e3..02efc1a 100644 --- a/R/elastic_mlpcr_regression.R +++ b/R/elastic_mlpcr_regression.R @@ -1,4 +1,4 @@ -#' Elastic Multinomial Logisitc Prinipcal Component Regression +#' Elastic Multinomial logistic Principal Component Regression #' #' This function identifies a multinomial logistic regression model with phase-variability #' using elastic pca @@ -6,9 +6,9 @@ #' @param f matrix (\eqn{N} x \eqn{M}) of \eqn{M} functions with \eqn{N} samples #' @param y vector of size \eqn{M} labels #' @param time vector of size \eqn{N} describing the sample points -#' @param pca.method string specifing pca method (options = "combined", +#' @param pca.method string specifying pca method (options = "combined", #' "vert", or "horiz", default = "combined") -#' @param no scalar specifify number of principal components (default=5) +#' @param no scalar specify number of principal components (default=5) #' @param smooth_data smooth data using box filter (default = F) #' @param sparam number of times to apply box filter (default = 25) #' @return Returns a mlpcr object containing @@ -19,7 +19,7 @@ #' \item{warp_data}{fdawarp object of aligned data} #' \item{pca}{pca object of principal components} #' \item{Loss}{logistic loss} -#' \item{pca.method}{string specifing pca method used} +#' \item{pca.method}{string specifying pca method used} #' @keywords srvf alignment regression #' @references J. D. Tucker, J. R. Lewis, and A. Srivastava, “Elastic #' Functional Principal Component Regression,” Statistical Analysis and Data diff --git a/R/elastic_pcr_regression.R b/R/elastic_pcr_regression.R index 8255b5a..b208630 100644 --- a/R/elastic_pcr_regression.R +++ b/R/elastic_pcr_regression.R @@ -1,4 +1,4 @@ -#' Elastic Linear Prinipcal Component Regression +#' Elastic Linear Principal Component Regression #' #' This function identifies a regression model with phase-variability #' using elastic pca @@ -6,9 +6,9 @@ #' @param f matrix (\eqn{N} x \eqn{M}) of \eqn{M} functions with \eqn{N} samples #' @param y vector of size \eqn{M} responses #' @param time vector of size \eqn{N} describing the sample points -#' @param pca.method string specifing pca method (options = "combined", +#' @param pca.method string specifying pca method (options = "combined", #' "vert", or "horiz", default = "combined") -#' @param no scalar specifify number of principal components (default=5) +#' @param no scalar specify number of principal components (default=5) #' @param smooth_data smooth data using box filter (default = F) #' @param sparam number of times to apply box filter (default = 25) #' @param parallel run in parallel (default = F) @@ -20,7 +20,7 @@ #' \item{warp_data}{fdawarp object of aligned data} #' \item{pca}{pca object of principal components} #' \item{SSE}{sum of squared errors} -#' \item{pca.method}{string specifing pca method used} +#' \item{pca.method}{string specifying pca method used} #' @keywords srvf alignment regression #' @references J. D. Tucker, J. R. Lewis, and A. Srivastava, “Elastic #' Functional Principal Component Regression,” Statistical Analysis and Data diff --git a/R/function_group_warp_bayes.R b/R/function_group_warp_bayes.R index 0b9dca9..f1a7e80 100644 --- a/R/function_group_warp_bayes.R +++ b/R/function_group_warp_bayes.R @@ -5,7 +5,7 @@ #' @param f matrix (\eqn{N} x \eqn{M}) of \eqn{M} functions with \eqn{N} samples #' @param time sample points of functions #' @param iter number of iterations (default = 150000) -#' @param powera Dirchelet prior parameter (default 1) +#' @param powera Dirichlet prior parameter (default 1) #' @param times factor of length of subsample points to look at (default = 5) #' @param tau standard deviation of Normal prior for increment (default ceil(times*.4)) #' @param gp number of colors in plots (default seq(dim(f)[2])) diff --git a/R/joint_gauss_model.R b/R/joint_gauss_model.R index aed2ea9..e47bea3 100644 --- a/R/joint_gauss_model.R +++ b/R/joint_gauss_model.R @@ -3,7 +3,7 @@ #' This function models the functional data using a Gaussian model extracted from #' the principal components of the srvfs using the joint model #' -#' @param warp_data fdawarp objecet from \link{time_warping} of aligned data +#' @param warp_data fdawarp object from \link{time_warping} of aligned data #' @param n number of random samples (n = 1) #' @param no number of principal components (n=4) #' @return Returns a fdawarp object containing \item{fs}{random aligned samples} diff --git a/R/jointfPCA.R b/R/jointfPCA.R index 0ffcf29..45e16e7 100644 --- a/R/jointfPCA.R +++ b/R/jointfPCA.R @@ -3,12 +3,12 @@ #' This function calculates amplitude and phase joint functional principal component #' analysis on aligned data #' -#' @param warp_data fdawarp objecet from \link{time_warping} of aligned data -#' @param no number of prinicpal components to extract +#' @param warp_data fdawarp object from \link{time_warping} of aligned data +#' @param no number of principal components to extract #' @param id integration point for f0 (default = midpoint) #' @param C balance value (default = NULL) #' @param ci geodesic standard deviations (default = c(-1,0,1)) -#' @param showplot show plots of prinipal directions (default = T) +#' @param showplot show plots of principal directions (default = T) #' @return Returns a list containing \item{q_pca}{srvf principal directions} #' \item{f_pca}{f principal directions} #' \item{latent}{latent values} diff --git a/R/pair_align_functions.R b/R/pair_align_functions.R index 15187ec..2ef9561 100644 --- a/R/pair_align_functions.R +++ b/R/pair_align_functions.R @@ -9,7 +9,7 @@ #' @param lambda controls amount of warping (default = 0) #' @param method controls which optimization method (default="DP") options are #' Dynamic Programming ("DP"), Coordinate Descent ("DP2"), Riemannian BFGS -#' ("RBFGS"), Simultaneous Alignment ("SIMUL"), Dirchelet Bayesian ("dBayes"), +#' ("RBFGS"), Simultaneous Alignment ("SIMUL"), Dirichlet Bayesian ("dBayes"), #' and Expo-Map Bayesian ("expBayes") #' @param w controls LRBFGS (default = 0.01) #' @param iter number of mcmc iterations for mcmc method (default 2000) diff --git a/R/pair_align_functions_bayes.R b/R/pair_align_functions_bayes.R index 6ada120..b39ff19 100644 --- a/R/pair_align_functions_bayes.R +++ b/R/pair_align_functions_bayes.R @@ -9,7 +9,7 @@ #' @param iter number of iterations (default = 15000) #' @param times factor of length of subsample points to look at (default = 5) #' @param tau standard deviation of Normal prior for increment (default ceil(times*.4)) -#' @param powera Dirchelet prior parameter (default 1) +#' @param powera Dirichlet prior parameter (default 1) #' @param showplot shows plots of functions (default = T) #' @param extrainfo T/F whether additional information is returned #' @return Returns a list containing \item{f1}{function 1} diff --git a/R/predict.lpcr.R b/R/predict.lpcr.R index b93a26a..d65f576 100644 --- a/R/predict.lpcr.R +++ b/R/predict.lpcr.R @@ -1,4 +1,4 @@ -#' Elastic Prediction for functional logisitc PCR Model +#' Elastic Prediction for functional logistic PCR Model #' #' This function performs prediction from an elastic logistic fPCR regression model #' with phase-variability @@ -8,7 +8,7 @@ #' @param y An optional vector of labels to calculate PC. If omitted, PC is NULL #' @param ... additional arguments affecting the predictions produced #' @return Returns a list containing -#' \item{y_pred}{predicted probabilites of the class of newdata} +#' \item{y_pred}{predicted probabilities of the class of newdata} #' \item{y_labels}{class labels of newdata} #' \item{PC}{probability of classification} #' @keywords srvf alignment regression diff --git a/R/predict.mlpcr.R b/R/predict.mlpcr.R index b522fe3..017d61f 100644 --- a/R/predict.mlpcr.R +++ b/R/predict.mlpcr.R @@ -1,4 +1,4 @@ -#' Elastic Prediction for functional multinomial logisitc PCR Model +#' Elastic Prediction for functional multinomial logistic PCR Model #' #' This function performs prediction from an elastic multinomial logistic fPCR regression model #' with phase-variability @@ -8,7 +8,7 @@ #' @param y An optional vector of labels to calculate PC. If omitted, PC is NULL #' @param ... additional arguments affecting the predictions produced #' @return Returns a list containing -#' \item{y_pred}{predicted probabilites of the class of newdata} +#' \item{y_pred}{predicted probabilities of the class of newdata} #' \item{y_labels}{class labels of newdata} #' \item{PC}{probability of classification per class} #' \item{PC.comb}{total probability of classification} diff --git a/R/tolerance.R b/R/tolerance.R index 1ca7317..b464a8d 100644 --- a/R/tolerance.R +++ b/R/tolerance.R @@ -89,7 +89,7 @@ bootTB <- function(f, time, a=.05, p=.99, B=500, no = 5, parallel=T){ #' Tolerance Bound Calculation using Elastic Functional PCA #' #' This function computes tolerance bounds for functional data containing -#' phase and amplitude variation using principal component anlaysis +#' phase and amplitude variation using principal component analysis #' #' @param f matrix of functions #' @param time vector describing time sampling diff --git a/man/elastic.lpcr.regression.Rd b/man/elastic.lpcr.regression.Rd index 88cbc3e..dc9fb6d 100644 --- a/man/elastic.lpcr.regression.Rd +++ b/man/elastic.lpcr.regression.Rd @@ -2,7 +2,7 @@ % Please edit documentation in R/elastic_lpcr_regression.R \name{elastic.lpcr.regression} \alias{elastic.lpcr.regression} -\title{Elastic Logisitc Prinipcal Component Regression} +\title{Elastic logistic Principal Component Regression} \usage{ elastic.lpcr.regression( f, @@ -21,10 +21,10 @@ elastic.lpcr.regression( \item{time}{vector of size \eqn{N} describing the sample points} -\item{pca.method}{string specifing pca method (options = "combined", +\item{pca.method}{string specifying pca method (options = "combined", "vert", or "horiz", default = "combined")} -\item{no}{scalar specifify number of principal components (default=5)} +\item{no}{scalar specify number of principal components (default=5)} \item{smooth_data}{smooth data using box filter (default = F)} @@ -38,7 +38,7 @@ Returns a lpcr object containing \item{warp_data}{fdawarp object of aligned data} \item{pca}{pca object of principal components} \item{Loss}{logistic loss} -\item{pca.method}{string specifing pca method used} +\item{pca.method}{string specifying pca method used} } \description{ This function identifies a logistic regression model with phase-variability diff --git a/man/elastic.mlpcr.regression.Rd b/man/elastic.mlpcr.regression.Rd index eda9301..62e098f 100644 --- a/man/elastic.mlpcr.regression.Rd +++ b/man/elastic.mlpcr.regression.Rd @@ -2,7 +2,7 @@ % Please edit documentation in R/elastic_mlpcr_regression.R \name{elastic.mlpcr.regression} \alias{elastic.mlpcr.regression} -\title{Elastic Multinomial Logisitc Prinipcal Component Regression} +\title{Elastic Multinomial logistic Principal Component Regression} \usage{ elastic.mlpcr.regression( f, @@ -21,10 +21,10 @@ elastic.mlpcr.regression( \item{time}{vector of size \eqn{N} describing the sample points} -\item{pca.method}{string specifing pca method (options = "combined", +\item{pca.method}{string specifying pca method (options = "combined", "vert", or "horiz", default = "combined")} -\item{no}{scalar specifify number of principal components (default=5)} +\item{no}{scalar specify number of principal components (default=5)} \item{smooth_data}{smooth data using box filter (default = F)} @@ -39,7 +39,7 @@ Returns a mlpcr object containing \item{warp_data}{fdawarp object of aligned data} \item{pca}{pca object of principal components} \item{Loss}{logistic loss} -\item{pca.method}{string specifing pca method used} +\item{pca.method}{string specifying pca method used} } \description{ This function identifies a multinomial logistic regression model with phase-variability diff --git a/man/elastic.pcr.regression.Rd b/man/elastic.pcr.regression.Rd index 74ca02b..ceebc87 100644 --- a/man/elastic.pcr.regression.Rd +++ b/man/elastic.pcr.regression.Rd @@ -2,7 +2,7 @@ % Please edit documentation in R/elastic_pcr_regression.R \name{elastic.pcr.regression} \alias{elastic.pcr.regression} -\title{Elastic Linear Prinipcal Component Regression} +\title{Elastic Linear Principal Component Regression} \usage{ elastic.pcr.regression( f, @@ -23,10 +23,10 @@ elastic.pcr.regression( \item{time}{vector of size \eqn{N} describing the sample points} -\item{pca.method}{string specifing pca method (options = "combined", +\item{pca.method}{string specifying pca method (options = "combined", "vert", or "horiz", default = "combined")} -\item{no}{scalar specifify number of principal components (default=5)} +\item{no}{scalar specify number of principal components (default=5)} \item{smooth_data}{smooth data using box filter (default = F)} @@ -44,7 +44,7 @@ Returns a pcr object containing \item{warp_data}{fdawarp object of aligned data} \item{pca}{pca object of principal components} \item{SSE}{sum of squared errors} -\item{pca.method}{string specifing pca method used} +\item{pca.method}{string specifying pca method used} } \description{ This function identifies a regression model with phase-variability diff --git a/man/function_group_warp_bayes.Rd b/man/function_group_warp_bayes.Rd index 7105d26..ad42afd 100644 --- a/man/function_group_warp_bayes.Rd +++ b/man/function_group_warp_bayes.Rd @@ -22,7 +22,7 @@ function_group_warp_bayes( \item{iter}{number of iterations (default = 150000)} -\item{powera}{Dirchelet prior parameter (default 1)} +\item{powera}{Dirichlet prior parameter (default 1)} \item{times}{factor of length of subsample points to look at (default = 5)} diff --git a/man/jointFPCA.Rd b/man/jointFPCA.Rd index 01892e2..56fec33 100644 --- a/man/jointFPCA.Rd +++ b/man/jointFPCA.Rd @@ -14,9 +14,9 @@ jointFPCA( ) } \arguments{ -\item{warp_data}{fdawarp objecet from \link{time_warping} of aligned data} +\item{warp_data}{fdawarp object from \link{time_warping} of aligned data} -\item{no}{number of prinicpal components to extract} +\item{no}{number of principal components to extract} \item{id}{integration point for f0 (default = midpoint)} @@ -24,7 +24,7 @@ jointFPCA( \item{ci}{geodesic standard deviations (default = c(-1,0,1))} -\item{showplot}{show plots of prinipal directions (default = T)} +\item{showplot}{show plots of principal directions (default = T)} } \value{ Returns a list containing \item{q_pca}{srvf principal directions} diff --git a/man/joint_gauss_model.Rd b/man/joint_gauss_model.Rd index 0bfcea0..02a6931 100644 --- a/man/joint_gauss_model.Rd +++ b/man/joint_gauss_model.Rd @@ -7,7 +7,7 @@ joint_gauss_model(warp_data, n = 1, no = 5) } \arguments{ -\item{warp_data}{fdawarp objecet from \link{time_warping} of aligned data} +\item{warp_data}{fdawarp object from \link{time_warping} of aligned data} \item{n}{number of random samples (n = 1)} diff --git a/man/pair_align_functions.Rd b/man/pair_align_functions.Rd index 0b0fc4e..6a3c893 100644 --- a/man/pair_align_functions.Rd +++ b/man/pair_align_functions.Rd @@ -25,7 +25,7 @@ pair_align_functions( \item{method}{controls which optimization method (default="DP") options are Dynamic Programming ("DP"), Coordinate Descent ("DP2"), Riemannian BFGS -("RBFGS"), Simultaneous Alignment ("SIMUL"), Dirchelet Bayesian ("dBayes"), +("RBFGS"), Simultaneous Alignment ("SIMUL"), Dirichlet Bayesian ("dBayes"), and Expo-Map Bayesian ("expBayes")} \item{w}{controls LRBFGS (default = 0.01)} diff --git a/man/pair_align_functions_bayes.Rd b/man/pair_align_functions_bayes.Rd index 6a851dd..15a450d 100644 --- a/man/pair_align_functions_bayes.Rd +++ b/man/pair_align_functions_bayes.Rd @@ -29,7 +29,7 @@ pair_align_functions_bayes( \item{tau}{standard deviation of Normal prior for increment (default ceil(times*.4))} -\item{powera}{Dirchelet prior parameter (default 1)} +\item{powera}{Dirichlet prior parameter (default 1)} \item{showplot}{shows plots of functions (default = T)} diff --git a/man/pcaTB.Rd b/man/pcaTB.Rd index f86ee39..e8f2652 100644 --- a/man/pcaTB.Rd +++ b/man/pcaTB.Rd @@ -25,7 +25,7 @@ Returns a list containing \item{pca}{pca output} } \description{ This function computes tolerance bounds for functional data containing -phase and amplitude variation using principal component anlaysis +phase and amplitude variation using principal component analysis } \examples{ \dontrun{ diff --git a/man/predict.lpcr.Rd b/man/predict.lpcr.Rd index 498ec39..7e84084 100644 --- a/man/predict.lpcr.Rd +++ b/man/predict.lpcr.Rd @@ -2,7 +2,7 @@ % Please edit documentation in R/predict.lpcr.R \name{predict.lpcr} \alias{predict.lpcr} -\title{Elastic Prediction for functional logisitc PCR Model} +\title{Elastic Prediction for functional logistic PCR Model} \usage{ \method{predict}{lpcr}(object, newdata = NULL, y = NULL, ...) } @@ -17,7 +17,7 @@ } \value{ Returns a list containing -\item{y_pred}{predicted probabilites of the class of newdata} +\item{y_pred}{predicted probabilities of the class of newdata} \item{y_labels}{class labels of newdata} \item{PC}{probability of classification} } diff --git a/man/predict.mlpcr.Rd b/man/predict.mlpcr.Rd index 6df4eb1..00275de 100644 --- a/man/predict.mlpcr.Rd +++ b/man/predict.mlpcr.Rd @@ -2,7 +2,7 @@ % Please edit documentation in R/predict.mlpcr.R \name{predict.mlpcr} \alias{predict.mlpcr} -\title{Elastic Prediction for functional multinomial logisitc PCR Model} +\title{Elastic Prediction for functional multinomial logistic PCR Model} \usage{ \method{predict}{mlpcr}(object, newdata = NULL, y = NULL, ...) } @@ -17,7 +17,7 @@ } \value{ Returns a list containing -\item{y_pred}{predicted probabilites of the class of newdata} +\item{y_pred}{predicted probabilities of the class of newdata} \item{y_labels}{class labels of newdata} \item{PC}{probability of classification per class} \item{PC.comb}{total probability of classification}