forked from libAtoms/GAP
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgp_fit.f95
750 lines (627 loc) · 31.4 KB
/
gp_fit.f95
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
! HND XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
! HND X
! HND X GAP (Gaussian Approximation Potental)
! HND X
! HND X
! HND X Portions of GAP were written by Albert Bartok-Partay, Gabor Csanyi,
! HND X Copyright 2006-2021.
! HND X
! HND X Portions of GAP were written by Noam Bernstein as part of
! HND X his employment for the U.S. Government, and are not subject
! HND X to copyright in the USA.
! HND X
! HND X GAP is published and distributed under the
! HND X Academic Software License v1.0 (ASL)
! HND X
! HND X GAP is distributed in the hope that it will be useful for non-commercial
! HND X academic research, but WITHOUT ANY WARRANTY; without even the implied
! HND X warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
! HND X ASL for more details.
! HND X
! HND X You should have received a copy of the ASL along with this program
! HND X (e.g. in a LICENSE.md file); if not, you can write to the original licensors,
! HND X Gabor Csanyi or Albert Bartok-Partay. The ASL is also published at
! HND X http://github.com/gabor1/ASL
! HND X
! HND X When using this software, please cite the following reference:
! HND X
! HND X A. P. Bartok et al Physical Review Letters vol 104 p136403 (2010)
! HND X
! HND X When using the SOAP kernel or its variants, please additionally cite:
! HND X
! HND X A. P. Bartok et al Physical Review B vol 87 p184115 (2013)
! HND X
! HND XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
!XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
!X
!X Gaussian Process module
!X
!% Module for general GP function interpolations.
!% A gp object contains the training set (fitting points and function values),
!% important temporary matrices, vectors and parameters.
!X
!XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
#include "error.inc"
module gp_fit_module
use iso_c_binding, only : C_NULL_CHAR
use error_module
use system_module
use extendable_str_module
use linearalgebra_module
use dictionary_module, only : STRING_LENGTH
use gp_predict_module
use clustering_module
use task_manager_module, only : task_manager_type
use MPI_context_module, only: bcast, gatherv, is_root, scatterv, sum
implicit none
private
integer, parameter, public :: EXCLUDE_CONFIG_TYPE = -10
interface gp_sparsify
module procedure gpFull_sparsify_array_config_type
endinterface gp_sparsify
public :: gp_sparsify
public :: count_entries_in_sparse_file
contains
subroutine gpCoordinates_sparsify_config_type(this, n_sparseX, default_all, task_manager, sparse_method, sparse_file, &
use_actual_gpcov, print_sparse_index, unique_hash_tolerance, unique_descriptor_tolerance, error)
type(gpCoordinates), intent(inout), target :: this
integer, dimension(:), intent(in) :: n_sparseX
logical, intent(in) :: default_all
type(task_manager_type), intent(in) :: task_manager
integer, intent(in), optional :: sparse_method
character(len=STRING_LENGTH), intent(in), optional :: sparse_file, print_sparse_index
logical, intent(in), optional :: use_actual_gpcov
real(dp), intent(in), optional :: unique_descriptor_tolerance, unique_hash_tolerance
integer, intent(out), optional :: error
integer :: my_sparse_method, i, j, li, ui, i_config_type, n_config_type, d, n_x
integer, dimension(:), allocatable :: config_type_index, sparseX_index, my_n_sparseX, x_index
real(dp), dimension(:,:), allocatable :: sparseX_array
integer, dimension(:), pointer :: config_type_ptr, x_size_ptr
real(dp), dimension(:), pointer :: covdiag_x_x_ptr, cutoff_ptr
real(dp), dimension(:,:), pointer :: dm, x_ptr
character(len=STRING_LENGTH) :: my_sparse_file
type(Inoutput) :: inout_sparse_index
nullify(config_type_ptr, x_size_ptr)
nullify(covdiag_x_x_ptr, cutoff_ptr)
nullify(dm, x_ptr)
INIT_ERROR(error)
my_sparse_method = optional_default(GP_SPARSE_RANDOM,sparse_method)
my_sparse_file = optional_default("",sparse_file)
if( .not. this%initialised ) then
RAISE_ERROR('gpCoordinates_sparsify: : object not initialised',error)
endif
d = size(this%x, 1)
if (task_manager%active) then
select case(my_sparse_method)
case (GP_SPARSE_NONE) ! shared task for Kmm breaks if n_sparseX increases
call system_abort("sparse_method NONE is not implemented for MPI.")
case (GP_SPARSE_INDEX_FILE) ! keeping original ordering of xyz frames would be too much effort
call system_abort("sparse_method INDEX_FILE is not implemented for MPI.")
case (GP_SPARSE_CLUSTER) ! routines depend directly on gpCoordinates
call system_abort("sparse_method CLUSTER is not implemented for MPI.")
case (GP_SPARSE_COVARIANCE) ! routines depend directly on gpCoordinates
call system_abort("sparse_method COVARIANCE is not implemented for MPI.")
case (GP_SPARSE_CUR_COVARIANCE) ! routines depend directly on gpCoordinates
call system_abort("sparse_method CUR_COVARIANCE is not implemented for MPI.")
case (GP_SPARSE_FILE)
! use serial pointers
case default
call print("Collecting x on a single process for sparsification with MPI.")
n_x = sum(task_manager%mpi_obj, size(this%config_type), error)
if (.not. is_root(task_manager%mpi_obj)) then
my_sparse_method = GP_SPARSE_SKIP
d = 1
n_x = 1
end if
allocate(config_type_ptr(n_x))
allocate(x_size_ptr(n_x))
allocate(covdiag_x_x_ptr(n_x))
allocate(cutoff_ptr(n_x))
allocate(x_ptr(d, n_x))
call gatherv(task_manager%mpi_obj, this%config_type, config_type_ptr, error=error)
call gatherv(task_manager%mpi_obj, this%x, x_ptr, error=error)
call gatherv(task_manager%mpi_obj, this%cutoff, cutoff_ptr, error=error)
if (this%covariance_type == COVARIANCE_BOND_REAL_SPACE) then
call gatherv(task_manager%mpi_obj, this%x_size, x_size_ptr, error=error)
end if
end select
end if
if (.not. associated(config_type_ptr)) config_type_ptr => this%config_type
if (.not. associated(x_size_ptr)) x_size_ptr => this%x_size
if (.not. associated(covdiag_x_x_ptr)) covdiag_x_x_ptr => this%covarianceDiag_x_x
if (.not. associated(cutoff_ptr)) cutoff_ptr => this%cutoff
if (.not. associated(x_ptr)) x_ptr => this%x
if (my_sparse_method /= GP_SPARSE_SKIP) then
allocate(my_n_sparseX(size(n_sparseX)), source=0)
call exclude_duplicates(x_ptr, config_type_ptr, unique_descriptor_tolerance, unique_hash_tolerance, error)
n_x = count(EXCLUDE_CONFIG_TYPE /= config_type_ptr)
end if
if (my_sparse_method == GP_SPARSE_SKIP) then
! pass
elseif(my_sparse_method == GP_SPARSE_UNIQ) then
RAISE_ERROR('gpCoordinates_sparsify: UNIQ is no longer in use, please use NONE instead.',error)
elseif(my_sparse_method == GP_SPARSE_NONE) then
allocate(x_index(n_x))
j = 0
do i = 1, size(x_ptr,2)
if( config_type_ptr(i) /= EXCLUDE_CONFIG_TYPE ) then
j = j + 1
x_index(j) = i
endif
enddo
this%n_sparseX = n_x
call print('NONE type sparsification specified. The number of sparse points was changed from '//n_sparseX//' to '//this%n_sparseX//'.')
elseif(my_sparse_method == GP_SPARSE_FILE .or. my_sparse_method == GP_SPARSE_INDEX_FILE) then
this%n_sparseX = count_entries_in_sparse_file(my_sparse_file, my_sparse_method, d, error)
else
do i_config_type = 1, size(n_sparseX)
if(default_all) then
if( n_x < sum(n_sparseX) ) then
call print_warning('gpCoordinates_sparsify: number of data points ('//n_x//') less than the number of sparse points ('//sum(n_sparseX)//'), &
number of sparse points changed to '//n_x)
call print_warning('gpCoordinates_sparsify: affected descriptor : '//this%descriptor_str)
my_n_sparseX(1) = n_x
else
my_n_sparseX(1) = sum(n_sparseX)
endif
else
if( n_sparseX(i_config_type) == 0 ) cycle
n_config_type = count(i_config_type == config_type_ptr)
if( n_config_type < n_sparseX(i_config_type) ) then
call print_warning('gpCoordinates_sparsify: number of data points ('//n_config_type//') less than the number of sparse points ('//n_sparseX(i_config_type)//'), &
number of sparse points changed to '//n_config_type)
call print_warning('gpCoordinates_sparsify: affected descriptor : '//this%descriptor_str)
my_n_sparseX(i_config_type) = n_config_type
else
my_n_sparseX(i_config_type) = n_sparseX(i_config_type)
endif
endif
if(default_all) exit
enddo
this%n_sparseX = sum(my_n_sparseX)
endif
if (task_manager%active .and. my_sparse_method /= GP_SPARSE_FILE) then
call bcast(task_manager%mpi_obj, this%n_sparseX, error)
end if
call reallocate(this%sparseX, this%d, this%n_sparseX, zero = .true.)
call reallocate(this%sparseX_index, this%n_sparseX, zero = .true.)
call reallocate(this%map_sparseX_globalSparseX, this%n_sparseX, zero = .true.)
call reallocate(this%alpha, this%n_sparseX, zero = .true.)
call reallocate(this%sparseCutoff, this%n_sparseX, zero = .true.)
this%sparseCutoff = 1.0_dp
if (my_sparse_method == GP_SPARSE_SKIP) then
! pass
elseif( my_sparse_method /= GP_SPARSE_FILE .and. my_sparse_method /= GP_SPARSE_INDEX_FILE) then
ui = 0
do i_config_type = 1, size(my_n_sparseX)
if( my_sparse_method == GP_SPARSE_NONE) exit
if(default_all) then
allocate(config_type_index(n_x), sparseX_index(this%n_sparseX))
j = 0
do i = 1, size(x_ptr,2)
if( config_type_ptr(i) /= EXCLUDE_CONFIG_TYPE ) then
j = j + 1
config_type_index(j) = i
endif
enddo
li = 1
ui = this%n_sparseX
n_config_type = n_x
else
if( my_n_sparseX(i_config_type) == 0 ) cycle
n_config_type = count(i_config_type == config_type_ptr)
allocate(config_type_index(n_config_type),sparseX_index(my_n_sparseX(i_config_type)))
config_type_index = find(i_config_type == config_type_ptr)
li = ui + 1
ui = ui + my_n_sparseX(i_config_type)
endif
select case(my_sparse_method)
case(GP_SPARSE_RANDOM)
call fill_random_integer(sparseX_index, n_config_type)
case(GP_SPARSE_PIVOT)
if(this%covariance_type == COVARIANCE_DOT_PRODUCT) then
call pivot(x_ptr(:,config_type_index), sparseX_index)
else
call pivot(x_ptr(:,config_type_index), sparseX_index, theta = this%theta)
endif
case(GP_SPARSE_CLUSTER)
if(use_actual_gpcov) then
call print('Started kernel distance matrix calculation')
dm => kernel_distance_matrix(this, config_type_index = config_type_index)
call print('Finished kernel distance matrix calculation')
endif
call print('Started kmedoids clustering')
if(use_actual_gpcov) then
call bisect_kmedoids(dm, my_n_sparseX(i_config_type), med = sparseX_index)
else
if(this%covariance_type == COVARIANCE_DOT_PRODUCT) then
call bisect_kmedoids(x_ptr(:,config_type_index), my_n_sparseX(i_config_type), med = sparseX_index, is_distance_matrix = .false.)
else
call bisect_kmedoids(x_ptr(:,config_type_index), my_n_sparseX(i_config_type), med = sparseX_index, theta = this%theta, is_distance_matrix = .false.)
endif
endif
call print('Finished kmedoids clustering')
if(use_actual_gpcov) deallocate(dm)
case(GP_SPARSE_UNIFORM)
call select_uniform(x_ptr(:,config_type_index), sparseX_index)
case(GP_SPARSE_KMEANS)
call print('Started kmeans clustering')
if(this%covariance_type == COVARIANCE_DOT_PRODUCT) then
call cluster_kmeans(x_ptr(:,config_type_index), sparseX_index)
else
call cluster_kmeans(x_ptr(:,config_type_index), sparseX_index, theta = this%theta)
endif
call print('Finished kmeans clustering')
case(GP_SPARSE_COVARIANCE)
call sparse_covariance(this,sparseX_index,config_type_index,use_actual_gpcov)
case(GP_SPARSE_FUZZY)
call print('Started fuzzy cmeans clustering')
if(this%covariance_type == COVARIANCE_DOT_PRODUCT) then
call cluster_fuzzy_cmeans(x_ptr(:,config_type_index), sparseX_index, fuzziness=2.0_dp)
else
call cluster_fuzzy_cmeans(x_ptr(:,config_type_index), sparseX_index, theta=this%theta,fuzziness=2.0_dp)
endif
call print('Finished fuzzy cmeans clustering')
case(GP_SPARSE_CUR_COVARIANCE)
call print("Started covariance matrix calculation")
dm => kernel_distance_matrix(this, config_type_index=config_type_index, covariance_only = .true.)
call print("Finished covariance matrix calculation")
call print("Started CUR decomposition")
call cur_decomposition(dm, sparseX_index)
call print("Finished CUR decomposition")
deallocate(dm)
case(GP_SPARSE_CUR_POINTS)
call print("Started CUR decomposition")
call cur_decomposition(x_ptr(:,config_type_index), sparseX_index)
call print("Finished CUR decomposition")
case default
RAISE_ERROR('gpCoordinates_sparsify: '//my_sparse_method//' method is unknown', error)
endselect
this%sparseX_index(li:ui) = config_type_index(sparseX_index)
deallocate(config_type_index,sparseX_index)
if(default_all) exit
enddo
elseif(my_sparse_method == GP_SPARSE_INDEX_FILE) then
call print('Started reading sparse indices from file '//trim(my_sparse_file))
call fread_array_i(size(this%sparseX_index),this%sparseX_index(1),trim(my_sparse_file)//C_NULL_CHAR)
call print('Finished reading sparse indices from file, '//size(this%sparseX_index)//' of them.')
endif
call reallocate(this%covarianceDiag_sparseX_sparseX, this%n_sparseX)
if (my_sparse_method == GP_SPARSE_SKIP) then
! pass
elseif(my_sparse_method == GP_SPARSE_FILE) then
call print('Started reading sparse descriptors from file '//trim(my_sparse_file))
allocate(sparseX_array(d+1,this%n_sparseX))
call fread_array_d(size(sparseX_array),sparseX_array(1,1),trim(my_sparse_file)//C_NULL_CHAR)
this%sparseCutoff = sparseX_array(1,:)
this%sparseX = sparseX_array(2:,:)
this%covarianceDiag_sparseX_sparseX = 1.0_dp ! only used for COVARIANCE_BOND_REAL_SPACE
deallocate(sparseX_array)
call print('Finished reading sparse descriptors from file, '//size(this%sparseCutoff)//' of them.')
else
if(my_sparse_method == GP_SPARSE_NONE) this%sparseX_index = x_index
call sort_array(this%sparseX_index)
if(this%covariance_type == COVARIANCE_BOND_REAL_SPACE) then
call reallocate(this%sparseX, maxval(x_size_ptr(this%sparseX_index)), this%n_sparseX)
call reallocate(this%sparseX_size, this%n_sparseX)
this%sparseX(:,:) = x_ptr(1:maxval(x_size_ptr(this%sparseX_index)),this%sparseX_index)
this%sparseX_size = x_size_ptr(this%sparseX_index)
else
this%sparseX(:,:) = x_ptr(:,this%sparseX_index)
endif
this%covarianceDiag_sparseX_sparseX = covdiag_x_x_ptr(this%sparseX_index)
this%sparseCutoff = cutoff_ptr(this%sparseX_index)
if(present(print_sparse_index)) then
if(len_trim(print_sparse_index) > 0) then
call initialise(inout_sparse_index, trim(print_sparse_index), action=OUTPUT, append=.true.)
call print(""//this%sparseX_index,file=inout_sparse_index)
call finalise(inout_sparse_index)
endif
endif
endif
if (task_manager%active .and. my_sparse_method /= GP_SPARSE_FILE) then
call print("Distributing sparseX after sparsification with MPI.")
call bcast(task_manager%mpi_obj, this%covarianceDiag_sparseX_sparseX, error=error)
call bcast(task_manager%mpi_obj, this%sparseCutoff, error=error)
call bcast(task_manager%mpi_obj, this%sparseX, error=error)
if (allocated(this%sparseX_size)) call bcast(task_manager%mpi_obj, this%sparseX_size, error=error)
deallocate(config_type_ptr)
deallocate(x_size_ptr)
deallocate(covdiag_x_x_ptr)
deallocate(cutoff_ptr)
deallocate(x_ptr)
end if
if (allocated(this%config_type)) deallocate(this%config_type)
if (allocated(this%sparseX_index)) deallocate(this%sparseX_index)
this%sparsified = .true.
endsubroutine gpCoordinates_sparsify_config_type
subroutine exclude_duplicates(x, config_type, unique_descriptor_tolerance, unique_hash_tolerance, error)
real(dp), dimension(:,:), intent(in) :: x
integer, dimension(:), intent(inout) :: config_type
real(dp), intent(in), optional :: unique_descriptor_tolerance, unique_hash_tolerance
integer, intent(out), optional :: error
integer :: i, j, n_x
real(dp) :: my_unique_hash_tolerance, my_unique_descriptor_tolerance
real(dp) :: max_diff
integer, dimension(:), allocatable :: x_index
real(dp), dimension(:), allocatable :: x_hash
INIT_ERROR(error)
my_unique_hash_tolerance = optional_default(1.0e-10_dp, unique_hash_tolerance)
my_unique_descriptor_tolerance = optional_default(1.0e-10_dp, unique_descriptor_tolerance)
n_x = count(config_type /= EXCLUDE_CONFIG_TYPE)
allocate(x_hash(n_x))
allocate(x_index(n_x))
! Compute 1-norm hash on all descriptors that we want to include, and the mapping to the full vector
j = 0
do i = 1, size(x,2)
if (config_type(i) /= EXCLUDE_CONFIG_TYPE) then
j = j + 1
x_hash(j) = sum(abs(x(:,i)))
x_index(j) = i
end if
end do
call heap_sort(x_hash, i_data=x_index)
! Compare neighbouring hashes. If they're within tolerance, compare the corresponding descriptors using the eucledian norm.
! Update the config type if they're equivalent.
do j = 2, n_x
if (abs(x_hash(j-1) - x_hash(j)) < my_unique_hash_tolerance) then
max_diff = maxval(abs(x(:,x_index(j)) - x(:,x_index(j-1))))
if (max_diff < my_unique_descriptor_tolerance) then
config_type(x_index(j-1)) = EXCLUDE_CONFIG_TYPE
end if
end if
end do
end subroutine exclude_duplicates
function count_entries_in_sparse_file(sparse_file, sparse_method, d, error) result(res)
character(len=*), intent(in) :: sparse_file
integer, intent(in) :: sparse_method
integer, intent(in) :: d ! coordinate_length
integer, intent(out), optional :: error
integer :: res
logical :: exist_sparse_file
integer :: n_sparse_file
INIT_ERROR(error)
inquire(file=trim(sparse_file), exist=exist_sparse_file)
if (.not. exist_sparse_file) then
RAISE_ERROR('count_entries_in_sparse_file: "'//trim(sparse_file)//'" does not exist', error)
end if
call fwc_l(trim(sparse_file)//C_NULL_CHAR, n_sparse_file)
select case (sparse_method)
case (GP_SPARSE_INDEX_FILE)
res = n_sparse_file
case (GP_SPARSE_FILE)
if (mod(n_sparse_file, d+1) /= 0) then
RAISE_ERROR('count_entries_in_sparse_file: file '//trim(sparse_file)//' contains '//n_sparse_file//" lines, not conforming with descriptor size "//d, error)
end if
res = n_sparse_file / (d + 1)
case default
RAISE_ERROR('count_entries_in_sparse_file: given sparse_method is not implemented: '//sparse_method, error)
end select
end function count_entries_in_sparse_file
subroutine gpFull_sparsify_array_config_type(this, n_sparseX, default_all, task_manager, sparse_method, sparse_file, &
use_actual_gpcov, print_sparse_index, unique_hash_tolerance, unique_descriptor_tolerance, error)
type(gpFull), intent(inout) :: this
integer, dimension(:,:), intent(in) :: n_sparseX
logical, dimension(:), intent(in) :: default_all
type(task_manager_type), intent(in) :: task_manager
integer, dimension(:), intent(in), optional :: sparse_method
character(len=STRING_LENGTH), dimension(:), intent(in), optional :: sparse_file, print_sparse_index
logical, intent(in), optional :: use_actual_gpcov
real(dp), dimension(:), intent(in), optional :: unique_hash_tolerance, unique_descriptor_tolerance
integer, intent(out), optional :: error
integer :: i
integer, dimension(:), allocatable :: my_sparse_method
character(len=STRING_LENGTH), dimension(:), allocatable :: my_sparse_file
INIT_ERROR(error)
if( .not. this%initialised ) then
RAISE_ERROR('gpFull_sparsify_array: object not initialised',error)
endif
allocate(my_sparse_method(this%n_coordinate))
allocate(my_sparse_file(this%n_coordinate))
my_sparse_method = optional_default((/ (GP_SPARSE_RANDOM, i=1,this%n_coordinate) /),sparse_method)
my_sparse_file = optional_default((/ ("", i=1,this%n_coordinate) /),sparse_file)
do i = 1, this%n_coordinate
call gpCoordinates_sparsify_config_type(this%coordinate(i), n_sparseX(:,i), default_all(i), task_manager, &
sparse_method=my_sparse_method(i), sparse_file=my_sparse_file(i), use_actual_gpcov=use_actual_gpcov, &
print_sparse_index=print_sparse_index(i), unique_hash_tolerance=unique_hash_tolerance(i), &
unique_descriptor_tolerance=unique_descriptor_tolerance(i), error=error)
enddo
endsubroutine gpFull_sparsify_array_config_type
function kernel_distance_matrix(this, config_type_index, covariance_only) result(k_nn)
type(gpCoordinates), intent(in) :: this
integer, dimension(:), intent(in), optional :: config_type_index
logical, intent(in), optional :: covariance_only
real(dp), pointer, dimension(:,:) :: k_nn ! actually the kernel distance matrix
!real(dp), dimension(:,:), allocatable :: k_nn
real(dp), dimension(:), allocatable :: k_self
logical :: do_kernel_distance
integer :: i, j, n, ii, jj
integer :: stat
call system_timer('kernel_distance_matrix')
do_kernel_distance = .not. optional_default(.false., covariance_only)
if(present(config_type_index)) then
n = size(config_type_index)
else
n = size(this%x,2)
endif
allocate(k_self(n))
allocate(k_nn(n,n), stat=stat)
if(stat /= 0) call system_abort('kernel_distance_matrix: could not allocate matrix.')
!$omp parallel do default(none) shared(this,n,config_type_index,k_self) private(i,ii)
do i = 1, n
if(present(config_type_index)) then
ii = config_type_index(i)
else
ii = i
endif
k_self(i) = gpCoordinates_Covariance(this, i_x = ii, j_x = ii, normalise = .false.)
enddo
do j = 1, n
if(present(config_type_index)) then
jj = config_type_index(j)
else
jj = j
endif
!k_nn(j,j) = 1.0_dp ! normalised kernel self-covariance
k_nn(j,j) = 0.0_dp ! distance to itself = 0
!$omp parallel do default(none) shared(n,this,k_nn,jj,j,k_self,config_type_index,do_kernel_distance) private(i,ii)
do i = j+1, n
if(present(config_type_index)) then
ii = config_type_index(i)
else
ii = i
endif
! kernel covariance
k_nn(j,i) = gpCoordinates_Covariance(this, i_x = ii, j_x = jj, normalise = .false.)
! then normalise
k_nn(j,i) = k_nn(j,i) / sqrt(k_self(i)*k_self(j))
if (do_kernel_distance) then
! now convert to distance
k_nn(j,i) = sqrt(2.0_dp * (1.0_dp - k_nn(j,i)))
endif
! finally, symmetrise
k_nn(i,j) = k_nn(j,i)
enddo ! i
enddo ! j
!dm = sqrt(2.0_dp * (1.0_dp - k_nn))
!do i = 1, n
! do j = i+1, n
! dm(i,j) = sqrt(2.0_dp*(1.0_dp - kij))
! dm(j,i) = dm(i,j)
! end do
!end do
!deallocate(k_nn, k_self)
deallocate(k_self)
call system_timer('kernel_distance_matrix')
end function kernel_distance_matrix
subroutine sparse_covariance(this, index_out, config_type_index, use_actual_gpcov)
type(gpCoordinates), intent(in) :: this
integer, dimension(:), intent(out) :: index_out
integer, dimension(:), intent(in), optional :: config_type_index
logical, intent(in), optional :: use_actual_gpcov
real(dp), dimension(:), allocatable :: score, k_self !, xI_xJ
real(dp), dimension(:,:), allocatable :: k_mn, k_mm_k_m
real(dp), dimension(1,1) :: k_mm
integer :: m, n, i, ii, j, jj, i_p, zeta_int
integer, dimension(1) :: j_loc
logical, dimension(:), allocatable :: not_yet_added
logical :: do_use_actual_gpcov
type(LA_Matrix) :: LA_k_mm
call system_timer('sparse_covariance')
if(present(config_type_index)) then
n = size(config_type_index)
else
n = size(this%x,2)
endif
m = size(index_out)
do_use_actual_gpcov = optional_default(.false., use_actual_gpcov)
if(do_use_actual_gpcov) then
call print("sparse_covariance using actual gpCoordinates_Covariance")
else
call print("sparse_covariance using manual 'covariance'")
endif
allocate(k_mn(m,n), score(n), k_mm_k_m(m,n), k_self(n), not_yet_added(n))
k_mn = 0.0_dp
not_yet_added = .true.
!allocate(xI_xJ(this%d))
j = 1
index_out(j) = 1 !ceiling(ran_uniform() * n)
not_yet_added(index_out(j)) = .false.
k_mm = 1.0_dp+1.0e-6_dp
zeta_int = nint(this%zeta)
call initialise(LA_k_mm,k_mm)
!$omp parallel do default(none) shared(this,n,config_type_index,k_self,do_use_actual_gpcov,zeta_int) private(i,ii,i_p)
do i = 1, n
if(present(config_type_index)) then
ii = config_type_index(i)
else
ii = i
endif
if(do_use_actual_gpcov) then
k_self(i) = gpCoordinates_Covariance(this, i_x = ii, j_x = ii, normalise = .false.)
else
if(this%covariance_type == COVARIANCE_BOND_REAL_SPACE) then
elseif(this%covariance_type == COVARIANCE_DOT_PRODUCT) then
if( zeta_int .feq. this%zeta ) then
k_self(i) = dot_product( this%x(:,ii), this%x(:,ii) )**zeta_int
else
k_self(i) = dot_product( this%x(:,ii), this%x(:,ii) )**this%zeta
endif
elseif( this%covariance_type == COVARIANCE_ARD_SE ) then
k_self(i) = 0.0_dp
do i_p = 1, this%n_permutations
!xI_xJ = (this%x(this%permutations(:,i_p),i) - this%x(:,j)) / 4.0_dp
k_self(i) = k_self(i) + exp( -0.5_dp * sum((this%x(this%permutations(:,i_p),ii) - this%x(:,ii))**2) / 16.0_dp )
enddo
elseif( this%covariance_type == COVARIANCE_PP ) then
k_self(i) = 0.0_dp
do i_p = 1, this%n_permutations
!xI_xJ = (this%x(this%permutations(:,i_p),i) - this%x(:,j)) / 4.0_dp
k_self(i) = k_self(i) + covariancePP( sqrt( sum((this%x(this%permutations(:,i_p),ii) - this%x(:,ii))**2) ) / 4.0_dp, PP_Q, this%d)
enddo
endif
endif
enddo
do j = 1, m-1
if(present(config_type_index)) then
jj = config_type_index(index_out(j))
else
jj = index_out(j)
endif
!$omp parallel do default(none) shared(n,this,k_mn,jj,j,LA_k_mm,k_mm_k_m,score,k_self,config_type_index,index_out,do_use_actual_gpcov,zeta_int) private(i,i_p,ii)
do i = 1, n
if(present(config_type_index)) then
ii = config_type_index(i)
else
ii = i
endif
if(do_use_actual_gpcov) then
k_mn(j,i) = gpCoordinates_Covariance(this, i_x = ii, j_x = jj, normalise = .false.)
else
if(this%covariance_type == COVARIANCE_BOND_REAL_SPACE) then
elseif(this%covariance_type == COVARIANCE_DOT_PRODUCT) then
if( zeta_int .feq. this%zeta ) then
k_mn(j,i) = dot_product( this%x(:,ii), this%x(:,jj) )**zeta_int
else
k_mn(j,i) = dot_product( this%x(:,ii), this%x(:,jj) )**this%zeta
endif
elseif( this%covariance_type == COVARIANCE_ARD_SE ) then
k_mn(j,i) = 0.0_dp
do i_p = 1, this%n_permutations
!xI_xJ = (this%x(this%permutations(:,i_p),i) - this%x(:,j)) / 4.0_dp
k_mn(j,i) = k_mn(j,i) + exp( -0.5_dp * sum((this%x(this%permutations(:,i_p),ii) - this%x(:,jj))**2) / 16.0_dp )
enddo
elseif( this%covariance_type == COVARIANCE_PP ) then
k_mn(j,i) = 0.0_dp
do i_p = 1, this%n_permutations
!xI_xJ = (this%x(this%permutations(:,i_p),i) - this%x(:,j)) / 4.0_dp
k_mn(j,i) = k_mn(j,i) + covariancePP( sqrt( sum((this%x(this%permutations(:,i_p),ii) - this%x(:,jj))**2) ) / 4.0_dp, PP_Q, this%d)
enddo
endif
endif
k_mn(j,i) = k_mn(j,i) / sqrt(k_self(i)*k_self(index_out(j)))
call Matrix_Solve(LA_k_mm,k_mn(1:j,i),k_mm_k_m(1:j,i))
score(i) = sum( k_mn(1:j,i) * k_mm_k_m(1:j,i) )
enddo
j_loc = minloc(score, mask=not_yet_added)
jj = j_loc(1)
index_out(j+1) = jj
not_yet_added(jj) = .false.
if(j == 1) then
call print('Initial score: '//score)
endif
call print('Min score: '//minval(score))
!k_mm(1:j_i,j_i+1) = k_mn(1:j_i,j)
!k_mm(j_i+1,1:j_i) = k_mn(1:j_i,j)
!k_mm(j_i+1,j_i+1) = 1.0_dp
call LA_Matrix_Expand_Symmetrically(LA_k_mm,(/k_mn(1:j,jj),1.0_dp+1.0e-6_dp/))
!call initialise(LA_k_mm,k_mm(1:j_i+1,1:j_i+1))
enddo
call print('Final score: '//score)
call print('Min score: '//minval(score))
deallocate(k_mn, score, k_mm_k_m, k_self, not_yet_added)
!if(allocated(xI_xJ)) deallocate(xI_xJ)
call finalise(LA_k_mm)
call system_timer('sparse_covariance')
endsubroutine sparse_covariance
end module gp_fit_module