-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfd.py
57 lines (47 loc) · 1.77 KB
/
fd.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
import cv2
import mediapipe as mp
import time
mp_drawing = mp.solutions.drawing_utils
mp_face_mesh = mp.solutions.face_mesh
pTime = 0
drawing_spec = mp_drawing.DrawingSpec(thickness=1, circle_radius=1)
cap = cv2.VideoCapture(0)
cap.set(cv2.CAP_PROP_FRAME_WIDTH,960)
cap.set(cv2.CAP_PROP_FRAME_HEIGHT,320)
cap.set(cv2.CAP_PROP_FPS,30)
with mp_face_mesh.FaceMesh(False,3,
min_detection_confidence=0.7,
min_tracking_confidence=0.2) as face_mesh:
while cap.isOpened():
success, image = cap.read()
if not success:
print("Ignoring empty camera frame.")
# If loading a video, use 'break' instead of 'continue'.
continue
# Flip the image horizontally for a later selfie-view display, and convert
# the BGR image to RGB.
image = cv2.cvtColor(cv2.flip(image, 1), cv2.COLOR_BGR2RGB)
# To improve performance, optionally mark the image as not writeable to
# pass by reference.
image.flags.writeable = False
results = face_mesh.process(image)
# Draw the face mesh annotations on the image.
image.flags.writeable = True
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
if results.multi_face_landmarks:
for face_landmarks in results.multi_face_landmarks:
mp_drawing.draw_landmarks(
image=image,
landmark_list=face_landmarks,
connections=mp_face_mesh.FACE_CONNECTIONS,
landmark_drawing_spec=drawing_spec,
connection_drawing_spec=drawing_spec)
cTime = time.time()
fps = 1 / (cTime - pTime)
pTime = cTime
image = cv2.putText(image,'FPS:' + str(int(fps)), (50,50),cv2.FONT_HERSHEY_SIMPLEX,
1, (3,12,156), 1, cv2.LINE_AA)
cv2.imshow('MediaPipe FaceMesh', image)
if cv2.waitKey(5) & 0xFF == ord('q'):
break
cap.release()