-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmLSTM_generate.py
217 lines (156 loc) · 8.48 KB
/
mLSTM_generate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
# -*- coding: utf-8 -*-
import os
import sys
import numpy as np
import argparse
import tensorflow as tf
import time
import io
import random
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--rnn_size', type=int, default=4096,
help='Size of RNN hidden states')
parser.add_argument('--embedding_size', type=int, default=64,
help='Character embedding layer size')
parser.add_argument('--restore_path', type= str, default=None,
help='Path to a directory from which to restore a model from previous session')
parser.add_argument('--num_chars', type=int, default=100,
help='Option to specify how many chars to sample from the model')
parser.add_argument('--wn', type=int, default=1,
help='Switch for weight normalisation on the mLSTM parameters. Integer argument of 1 for ON and 0 for OFF')
parser.add_argument('--prime', type=str, default=None,
help='Prime the network with some bytes')
parser.add_argument('--save_samples', type=str, default=None,
help='Directory to save the generated samples')
parser.add_argument('--restore_weights', type=str, default=None,
help='Directory to save the generated samples')
parser.add_argument('--vocab_size', type=str, default=256,
help='Input size')
parser.add_argument('--sentiment_neuron_value', type=int, default=4,
help='Fix value of the sentiment Neuron')
parser.add_argument('--sentiment_neuron_index', type=int, default=3984,
help='Specify the index of the Sentiment Neuron')
args = parser.parse_args()
rnn_size = args.rnn_size
embedding_size = args.embedding_size
restore_path = args.restore_path
prime = args.prime
vocabulary_size = args.vocab_size # byte
sentiment_neuron_index = args.sentiment_neuron_index
sentiment_neuron_value = args.sentiment_neuron_value
weights_list = np.load(os.path.join(restore_path,'model.npy'))
graph = tf.Graph()
with graph.as_default():
# define all of the model variables
W_embedding = tf.get_variable('W_embedding',initializer=tf.constant(weights_list[0]))
# mt = (Wmxxt) ⊙ (Wmhht−1) - equation 18
Wmx = tf.get_variable('Wmx', initializer=tf.constant(weights_list[1]))
Wmh = tf.get_variable('Wmh', initializer=tf.constant(weights_list[2]))
# hˆt = Whxxt + Whmmt
Whx = tf.get_variable('Whx', initializer=tf.constant(weights_list[3]))
Whm = tf.get_variable('Whm', initializer=tf.constant(weights_list[4]))
Whb = tf.get_variable('Whb', initializer=tf.constant(weights_list[5]))
# it = σ(Wixxt + Wimmt)
Wix = tf.get_variable('Wix', initializer=tf.constant(weights_list[6]))
Wim = tf.get_variable('Wim', initializer=tf.constant(weights_list[7]))
Wib = tf.get_variable('Wib', initializer=tf.constant(weights_list[8]))
# ot = σ(Woxxt + Wommt)
Wox = tf.get_variable('Wox', initializer=tf.constant(weights_list[9]))
Wom = tf.get_variable('Wom', initializer=tf.constant(weights_list[10]))
Wob = tf.get_variable('Wob', initializer=tf.constant(weights_list[11]))
# ft =σ(Wfxxt +Wfmmt)
Wfx = tf.get_variable('Wfx', initializer=tf.constant(weights_list[12]))
Wfm = tf.get_variable('Wfm', initializer=tf.constant(weights_list[13]))
Wfb = tf.get_variable('Wfb', initializer=tf.constant(weights_list[14]))
# define the g parameters for weight normalization if wn switch is on
if args.wn == 1:
gmx = tf.get_variable('gmx', initializer=tf.constant(weights_list[15]))
gmh = tf.get_variable('gmh', initializer=tf.constant(weights_list[16]))
ghx = tf.get_variable('ghx', initializer=tf.constant(weights_list[17]))
ghm = tf.get_variable('ghm', initializer=tf.constant(weights_list[18]))
gix = tf.get_variable('gix', initializer=tf.constant(weights_list[19]))
gim = tf.get_variable('gim', initializer=tf.constant(weights_list[20]))
gox = tf.get_variable('gox', initializer=tf.constant(weights_list[21]))
gom = tf.get_variable('gom', initializer=tf.constant(weights_list[22]))
gfx = tf.get_variable('gfx', initializer=tf.constant(weights_list[23]))
gfm = tf.get_variable('gfm', initializer=tf.constant(weights_list[24]))
# normalized weights
Wmx = tf.nn.l2_normalize(Wmx, dim=0)*gmx
Wmh = tf.nn.l2_normalize(Wmh, dim=0)*gmh
Whx = tf.nn.l2_normalize(Whx,dim=0)*ghx
Whm = tf.nn.l2_normalize(Whm,dim=0)*ghm
Wix = tf.nn.l2_normalize(Wix,dim=0)*gix
Wim = tf.nn.l2_normalize(Wim,dim=0)*gim
Wox = tf.nn.l2_normalize(Wox,dim=0)*gox
Wom = tf.nn.l2_normalize(Wom,dim=0)*gom
Wfx = tf.nn.l2_normalize(Wfx,dim=0)*gfx
Wfm = tf.nn.l2_normalize(Wfm,dim=0)*gfm
# classifier weights and biases.
w = tf.get_variable('Classifier_w', initializer=tf.constant(weights_list[25]))
b = tf.get_variable('Classifier_b', initializer=tf.constant(weights_list[26]))
def mlstm_cell(x, h, c):
"""
multiplicative LSTM cell. https://arxiv.org/pdf/1609.07959.pdf
"""
# mt = (Wmxxt) ⊙ (Wmhht−1) - equation 18
mt = tf.matmul(x,Wmx) * tf.matmul(h,Wmh)
# hˆt = Whxxt + Whmmt
ht = tf.tanh(tf.matmul(x,Whx) + tf.matmul(mt,Whm) + Whb)
# it = σ(Wixxt + Wimmt)
it = tf.sigmoid(tf.matmul(x,Wix) + tf.matmul(mt,Wim)+ Wib)
# ot = σ(Woxxt + Wommt)
ot = tf.sigmoid(tf.matmul(x,Wox) + tf.matmul(mt,Wom)+ Wob)
# ft =σ(Wfxxt +Wfmmt)
ft = tf.sigmoid(tf.matmul(x,Wfx) + tf.matmul(mt,Wfm)+ Wfb)
c_new = (ft * c) + (it * ht)
h_new = tf.tanh(c_new) * ot
return h_new, c_new
# Sampling code.
sample_input = tf.placeholder(tf.int32, shape=(1,), name = 'sample_input')
sample_embedding= tf.nn.embedding_lookup(W_embedding,sample_input)
saved_sample_output = tf.Variable(tf.zeros([1, rnn_size]), name = 'saved_sample_output')
saved_sample_state = tf.Variable(tf.zeros([1, rnn_size]), name = 'saved_sample_state')
reset_sample_state = tf.group(saved_sample_output.assign(tf.zeros([1, rnn_size])), saved_sample_state.assign(tf.zeros([1, rnn_size])),name='reset_sample_state_op')
sample_state_var= tf.Variable(saved_sample_state,name='sample_state_var')
sample_output, sample_state = mlstm_cell(sample_embedding, saved_sample_output, sample_state_var)
with tf.control_dependencies([saved_sample_output.assign(sample_output),sample_state_var.assign(sample_state)]):
# fix the value of the sentiment neuron
if sentiment_neuron_index is not None:
sample_state_var = tf.assign(sample_state_var[0, sentiment_neuron_index], sentiment_neuron_value)
sample_prediction = tf.nn.softmax(tf.nn.xw_plus_b(sample_output, w, b), name = 'sample_prediction')
with tf.Session(graph=graph) as session:
tf.global_variables_initializer().run()
print('Variables Initialized')
print('Sampling...')
start = time.time()
print('='*100)
sentence = bytearray()
if args.prime is not None:
# prime the network with a sequence of bytes
prime = bytearray(args.prime)
sentence += prime
for i in prime:
feed = np.array(i, ndmin=1)
prediction = session.run(sample_prediction, feed_dict = {sample_input: feed})
else:
# prime with a random byte
feed = np.array(random.sample(xrange(vocabulary_size),1), dtype='int32')
prediction = session.run(sample_prediction, feed_dict = {sample_input: feed})
for _ in xrange(args.num_chars):
# sequence is generated here
feed = np.expand_dims(np.random.choice(xrange(vocabulary_size), p=prediction.ravel()),axis=0)
sentence.append(int(feed))
prediction, ssv = session.run([sample_prediction, sample_state_var],feed_dict = {sample_input: feed})
# decode the bytes to get unicode representation
sentence = sentence.decode('utf-8', errors='replace')
print(sentence)
end = time.time()
print('='*100)
print('Sampling time = ', end - start)
if args.save_samples is not None:
if not os.path.exists(args.save_samples):
os.makedirs(args.save_samples)
sample_file = os.path.join(args.save_samples,'samples')
with io.open(sample_file, 'a+', encoding='utf-8') as f:
f.write(sentence)