-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun.py
245 lines (221 loc) · 12.1 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
import argparse
import os
import torch
from exp.exp_long_term_forecasting import Exp_Long_Term_Forecast
import random
import numpy as np
import sys
def str2bool(v):
if isinstance(v, bool):
return v
if v.lower() in ('yes', 'true', 't', 'y', '1'):
return True
elif v.lower() in ('no', 'false', 'f', 'n', '0'):
return False
else:
raise argparse.ArgumentTypeError('Boolean value expected.')
if __name__ == '__main__':
parser = argparse.ArgumentParser()
# basic config
parser.add_argument('--task_name', type=str, default='long_term_forecast',
help='task name, options:[long_term_forecast, short_term_forecast, imputation, classification, anomaly_detection]')
parser.add_argument('--is_training', type=int, default=1, help='status')
parser.add_argument('--model_id', type=str, default='test', help='model id')
parser.add_argument('--model', type=str, default='VarFormer', help='model name, options: [VarFormer, Autoformer, Transformer, TimesNet, etc.]')
# data loader
parser.add_argument('--data', type=str, default='ETTm1', help='dataset type')
parser.add_argument('--root_path', type=str, default='./data/ETT/', help='root path of the data file')
parser.add_argument('--data_path', type=str, default='ETTh1.csv', help='data file')
parser.add_argument('--features', type=str, default='M',
help='forecasting task, options:[M, S, MS]; M:multivariate predict multivariate, S:univariate predict univariate, MS:multivariate predict univariate')
parser.add_argument('--target', type=str, default='OT', help='target feature in S or MS task')
parser.add_argument('--freq', type=str, default='h',
help='freq for time features encoding, options:[s:secondly, t:minutely, h:hourly, d:daily, b:business days, w:weekly, m:monthly], you can also use more detailed freq like 15min or 3h')
parser.add_argument('--checkpoints', type=str, default='./checkpoints/', help='location of model checkpoints')
parser.add_argument('--exp_type', type=str, default='multi', help='experiment type')
# forecasting setting
parser.add_argument('--seq_len', type=int, default=96, help='input sequence length')
parser.add_argument('--label_len', type=int, default=48, help='start token length')
parser.add_argument('--pred_len', type=int, default=96, help='prediction sequence length')
parser.add_argument('--seasonal_patterns', type=str, default='Monthly', help='subset for M4')
# model define - common parameters
parser.add_argument('--enc_in', type=int, default=7, help='encoder input size')
parser.add_argument('--dec_in', type=int, default=7, help='decoder input size')
parser.add_argument('--c_out', type=int, default=7, help='output size')
parser.add_argument('--d_model', type=int, default=512, help='dimension of model')
parser.add_argument('--n_heads', type=int, default=8, help='num of heads')
parser.add_argument('--e_layers', type=int, default=2, help='num of encoder layers')
parser.add_argument('--d_layers', type=int, default=1, help='num of decoder layers')
parser.add_argument('--d_ff', type=int, default=2048, help='dimension of fcn')
parser.add_argument('--dropout', type=float, default=0.1, help='dropout')
parser.add_argument('--embed', type=str, default='timeF',
help='time features encoding, options:[timeF, fixed, learned]')
parser.add_argument('--output_attention', action='store_true', help='whether to output attention in encoder')
# model define - VarFormer specific parameters
parser.add_argument('--inter_dim', type=int, default=128, help='intermediate dimension for VarFormer')
parser.add_argument('--latent_dim', type=int, default=64, help='latent dimension for VarFormer')
parser.add_argument('--input_dim', type=int, default=1, help='input dimension for VarFormer')
parser.add_argument('--beta', type=float, default=1, help='beta for generative model loss')
parser.add_argument('--alpha', type=float, default=1, help='alpha for transformer NLL model loss')
parser.add_argument('--nvars', type=int, default=1, help='number of variables')
parser.add_argument('--revin', type=bool, default=True, help='whether to use RevIN in ModernTCN')
parser.add_argument('--affine', type=bool, default=True, help='whether to use affine transformation in RevIN')
parser.add_argument('--subtract_last', type=bool, default=False, help='whether to subtract last value in RevIN')
parser.add_argument('--c_in', type=int, default=7, help='input size')
parser.add_argument('--embed_type', type=str, default='timeF',
help='time features encoding type, options:[timeF, fixed, learned]')
# model define - other models specific parameters
parser.add_argument('--top_k', type=int, default=2, help='for TimesBlock')
parser.add_argument('--num_kernels', type=int, default=6, help='for Inception')
parser.add_argument('--fnet_d_model', type=int, default=512, help='dimension of model of fnet')
parser.add_argument('--fnet_layers', type=int, default=2, help='num of fnet layers')
parser.add_argument('--fnet_d_ff', type=int, default=2048, help='dimension of fcn of fnet')
parser.add_argument('--moving_avg', type=int, default=25, help='window size of moving average')
parser.add_argument('--factor', type=int, default=1, help='attn factor')
parser.add_argument('--distil', action='store_false',
help='whether to use distilling in encoder, using this argument means not using distilling',
default=True)
parser.add_argument('--complex_dropout', type=float, default=0.1, help='complex_dropout')
parser.add_argument('--activation', type=str, default='gelu', help='activation')
# optimization
parser.add_argument('--num_workers', type=int, default=10, help='data loader num workers')
parser.add_argument('--itr', type=int, default=1, help='experiments times')
parser.add_argument('--train_epochs', type=int, default=100, help='train epochs')
parser.add_argument('--batch_size', type=int, default=32, help='batch size of train input data')
parser.add_argument('--patience', type=int, default=3, help='early stopping patience')
parser.add_argument('--learning_rate', type=float, default=0.0001, help='optimizer learning rate')
parser.add_argument('--weight_decay', type=float, default=0.01, help='Adam weight decay')
parser.add_argument('--des', type=str, default='test', help='exp description')
parser.add_argument('--loss', type=str, default='MSE', help='loss function')
parser.add_argument('--lradj', type=str, default='type1', help='adjust learning rate')
parser.add_argument('--use_amp', type=bool, default=False, help='use automatic mixed precision training')
parser.add_argument('--pct_start', type=float, default=0.1, help='pct_start')
# GPU
parser.add_argument('--use_gpu', type=bool, default=True, help='use gpu')
parser.add_argument('--gpu', type=int, default=0, help='gpu')
parser.add_argument('--use_multi_gpu', type=bool, help='use multiple gpus', default=False)
parser.add_argument('--devices', type=str, default='0,1,2,3', help='device ids of multile gpus')
parser.add_argument('--device', type=str, default='cpu')
# de-stationary projector params
parser.add_argument('--p_hidden_dims', type=int, nargs='+', default=[128, 128],
help='hidden layer dimensions of projector (List)')
parser.add_argument('--p_hidden_layers', type=int, default=2, help='number of hidden layers in projector')
# additional params
parser.add_argument('--low_pass', type=bool, default=False)
parser.add_argument('--low_pass_threshold', type=float, default=3)
args = parser.parse_args()
args.use_gpu = True if torch.cuda.is_available() and args.use_gpu else False
if torch.cuda.device_count() <= 1:
args.use_multi_gpu = False
if args.use_gpu and args.use_multi_gpu:
args.device_ids = np.arange(torch.cuda.device_count()).tolist()
args.gpu = args.device_ids[0]
# settings
args.task_name = 'long_term_forecast'
args.is_training = 1
args.root_path = './datasets/'
args.checkpoints = './checkpoints/' + args.exp_type + '/'
# Set embed_type to match embed for compatibility
args.embed_type = args.embed
print('Args in experiment:')
print(args)
print(os.getcwd())
print(os.path.abspath(os.path.join(os.getcwd(), "..")))
print(os.path.abspath(os.path.join(os.getcwd(), "../..")))
Exp = Exp_Long_Term_Forecast
if args.is_training:
for ii in range(args.itr):
# setting record of experiments
if args.model == 'VarFormer':
setting = '{}_{}_{}_{}_ft{}_sl{}_ll{}_pl{}_dm{}_nh{}_el{}_dl{}_df{}_eb{}_id{}_ld{}_revin{}_{}_{}'.format(
args.task_name,
args.model_id,
args.model,
args.data,
args.features,
args.seq_len,
args.label_len,
args.pred_len,
args.d_model,
args.n_heads,
args.e_layers,
args.d_layers,
args.d_ff,
args.embed,
args.inter_dim,
args.latent_dim,
args.revin,
args.des, ii)
else:
setting = '{}_{}_{}_{}_ft{}_sl{}_ll{}_pl{}_dm{}_nh{}_el{}_dl{}_df{}_fc{}_eb{}_dt{}_{}_{}'.format(
args.task_name,
args.model_id,
args.model,
args.data,
args.features,
args.seq_len,
args.label_len,
args.pred_len,
args.d_model,
args.n_heads,
args.e_layers,
args.d_layers,
args.d_ff,
args.factor,
args.embed,
args.distil,
args.des, ii)
if os.path.exists('results/' + args.exp_type + '/'):
if setting in os.listdir('results/' + args.exp_type + '/'):
sys.exit()
exp = Exp(args) # set experiments
print('>>>>>>>start training : {}>>>>>>>>>>>>>>>>>>>>>>>>>>'.format(setting))
exp.train(setting)
print('>>>>>>>testing : {}<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<'.format(setting))
exp.test(setting)
torch.cuda.empty_cache()
else:
ii = 0
if args.model == 'VarFormer':
setting = '{}_{}_{}_{}_ft{}_sl{}_ll{}_pl{}_dm{}_nh{}_el{}_dl{}_df{}_eb{}_id{}_ld{}_revin{}_{}_{}'.format(
args.task_name,
args.model_id,
args.model,
args.data,
args.features,
args.seq_len,
args.label_len,
args.pred_len,
args.d_model,
args.n_heads,
args.e_layers,
args.d_layers,
args.d_ff,
args.embed,
args.inter_dim,
args.latent_dim,
args.revin,
args.des, ii)
else:
setting = '{}_{}_{}_{}_ft{}_sl{}_ll{}_pl{}_dm{}_nh{}_el{}_dl{}_df{}_fc{}_eb{}_dt{}_{}_{}'.format(
args.task_name,
args.model_id,
args.model,
args.data,
args.features,
args.seq_len,
args.label_len,
args.pred_len,
args.d_model,
args.n_heads,
args.e_layers,
args.d_layers,
args.d_ff,
args.factor,
args.embed,
args.distil,
args.des, ii)
exp = Exp(args) # set experiments
print('>>>>>>>testing : {}<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<'.format(setting))
exp.test(setting, test=1)
torch.cuda.empty_cache()