-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathnntrain.m
56 lines (44 loc) · 1.84 KB
/
nntrain.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
function [nn, training] = nntrain(nn, xTrain, yTrain, opts)
%% FINETUNE
% Mini-batch gradient descent with reconstruction mean squared error
nExamples = size(xTrain,2);
nBatches = nExamples / opts.nBatchSize;
nLayers = numel(nn.rbm);
training = []; % logging [epoch, mse]
%% BACKPROP
for epoch = 1:opts.nEpochs
kk = randperm(nExamples);
tic
for j = 1:nBatches
% Feed forward
batch = xTrain(:, kk( (j-1) * opts.nBatchSize + 1 : j * opts.nBatchSize));
t = yTrain(:, kk( (j-1) * opts.nBatchSize + 1 : j * opts.nBatchSize));
X = nnfeedforward(nn, batch);
err = sum(sum(0.5*(X{end} - t).^2))/opts.nBatchSize;
if mod(j,10) == 1
% visualisereconstruction(X{1}(:,1), X{end}(:,1));
% pause(0.15);
training = [training; (j-1)/nBatches+(epoch-1) err];
fprintf('Epoch %d/%d, batch %d/%d. Reconstruction error %f (last deltaW %f)\n',...
epoch, opts.nEpochs, j-1, nBatches, err, sum(sum(abs(nn.rbm{end}.deltaW))));
end
g = X{end} - X{1}; % Gradient on the output layer.
for l = nLayers:-1:1
if strcmp(nn.rbm{l}.hiddenUnits, 'linear')
g = g;
else
g = g .* X{l+1} .* (1-X{l+1}); % Gradient z (pre non-linearity)
end
nn.rbm{l}.deltaW = opts.learningRate * ( ...
-g*X{l}' / opts.nBatchSize - opts.l2 * nn.rbm{l}.W ...
) + opts.momentum * nn.rbm{l}.deltaW;
nn.rbm{l}.deltaB = opts.learningRate * ( ...
-sum(g,2) / opts.nBatchSize) + opts.momentum * nn.rbm{l}.deltaB;
nn.rbm{l}.W = nn.rbm{l}.W + nn.rbm{l}.deltaW;
nn.rbm{l}.b = nn.rbm{l}.b + nn.rbm{l}.deltaB;
g = nn.rbm{l}.W'*g;
end
end
toc;
end
end