-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathreports_2015.html
256 lines (238 loc) · 11.3 KB
/
reports_2015.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge">
<meta name="viewport" content="width=device-width, initial-scale=1">
<title>Stanford University CS224d: Deep Learning for Natural Language Processing</title>
<!-- bootstrap -->
<link rel="stylesheet" href="https://maxcdn.bootstrapcdn.com/bootstrap/3.2.0/css/bootstrap.min.css">
<link rel="stylesheet" href="https://maxcdn.bootstrapcdn.com/bootstrap/3.2.0/css/bootstrap-theme.min.css">
<!-- Google fonts -->
<link href='http://fonts.googleapis.com/css?family=Roboto:400,300' rel='stylesheet' type='text/css'>
<!-- Google Analytics -->
<script>
(function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){
(i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o),
m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m)
})(window,document,'script','//www.google-analytics.com/analytics.js','ga');
ga('create', 'UA-60458624-1', 'auto');
ga('send', 'pageview');
</script>
<link rel="stylesheet" type="text/css" href="style.css" />
</head>
<body>
<div id="header">
<a href="http://nlp.stanford.edu/">
<img src="http://nlp.stanford.edu/sentiment/images/nlp-logo.gif" style="height:50px; float: left; margin-left: 20px;">
</a>
<a href="index.html">
<h1>CS224d: Deep Learning for Natural Language Processing</h1>
</a>
<div style="clear:both;"></div>
</div>
<div class="sechighlight">
<div class="container sec">
<h2>Reports for 2015</h2>
</div>
</div>
<div class="container sec">
<table class="table">
<tr class="active">
<th>Project Name</th><th>Authors</th>
</tr>
<tr>
<td> <a href="reports/AbajianAaron.pdf"> Classifying responses on online discussion forums</a> </td> <td> Aaron Abajian</td>
</tr>
<tr>
<td> <a href="reports/AdamsonAlex.pdf"> Opinion Tagging Using Deep Recurrent Nets with GRUs</a> </td> <td> Alex Adamson / Vehbi Deger Turan</td>
</tr>
<tr>
<td> <a href="reports/AhresY.pdf"> Entity Level Sentiment Analysis for Amazon Web Reviews</a> </td> <td> Y. Ahres / N. Volk</td>
</tr>
<tr>
<td> <a href="reports/Anonymous.pdf"> MT using RNNs enriched with Universal</a> </td> <td> Anonymous</td>
</tr>
<tr>
<td> <a href="reports/Anonymous1.pdf"> Selecting Best Answers from Question-Answers Pairs</a> </td> <td> Anonymous</td>
</tr>
<tr>
<td> <a href="reports/BartleAric.pdf"> Gender Classification with Deep Learning</a> </td> <td> Aric Bartle / Jim Zheng</td>
</tr>
<tr>
<td> <a href="reports/BergerMark.pdf"> Large Scale Multi-label Text Classification with Semantic Word Vectors</a> </td> <td> Mark J. Berger </td>
</tr>
<tr>
<td> <a href="reports/BoucherEric.pdf"> Job Classification Based on LinkedIn Summaries</a> </td> <td> Eric Boucher / Clement Renault</td>
</tr>
<tr>
<td> <a href="http://cs224d.stanford.edu/reports/BradburyJames.pdf"> Exploring Two Extensions to LSTM Machine Translation</a> </td> <td> James Bradbury</td>
</tr>
<tr>
<td> <a href="reports/BunzBenedikt.pdf"> Graph Neural Networks and Boolean Satisfiability</a> </td> <td> Benedikt Bunz / Matthew Lamm</td>
</tr>
<tr>
<td> <a href="reports/ChagantyArun.pdf"> Quote Attribution for Literary Text with Neural Networks</a> </td> <td> Arun Chaganty / Grace Muzny</td>
</tr>
<tr>
<td> <a href="reports/ChaiElaina.pdf">Sentence Extraction for Yelp Review Summarization</a> </td> <td> Elaina Chai / Neil Gallagher</td>
</tr>
<tr>
<td> <a href="reports/ChengXioa.pdf"> A Deep Architecture for Coreference Resolution</a> </td> <td> Xiao Cheng / Rob Voigt</td>
</tr>
<tr>
<td> <a href="reports/ClarkKevin.pdf"> Neural Coreference Resolution</a> </td> <td> Kevin Clark</td>
</tr>
<tr>
<td> <a href="reports/CravensAaron.pdf"> Annotating protein secondary structure from sequence</a> </td> <td> Aaron Cravens / Christopher Probert</td>
</tr>
<tr>
<td> <a href="reports/DasSubhasis.pdf"> NeuralTalk on Embedded System and GPU-accelerated RNN</a> </td> <td> Subhasis Das / Song Han</td>
</tr>
<tr>
<td> <a href="reports/DufourNick.pdf"> Simultaneous Visual and Linguistic Embeddings with CNNs and T-LSTMs</a> </td> <td> Nick Dufour / Jayant Thatte / Prasanth Veerina</td>
</tr>
<tr>
<td> <a href="reports/EugeneLouis.pdf"> Making a Manageable Email Experience with Deep Learning</a> </td> <td> Louis Eugene / Isaac Caswell</td>
</tr>
<tr>
<td> <a href="reports/GargAmit.pdf"> Quantify customer perception using natural language reviews</a> </td> <td> Amit Garg / Rahul Venkatraj </td>
</tr>
<tr>
<td> <a href="reports/GielAndrew.pdf"> Document Embeddings via Recurrent Language Models </a> </td> <td> Andrew Giel / Ryan Diaz</td>
</tr>
<tr>
<td> <a href="reports/GreavesAlex.pdf"> Classification of EEG with Recurrent Neural Networks</a> </td> <td> Alex S. Greaves</td>
</tr>
<tr>
<td> <a href="reports/GreensteinEric.pdf"> Japanese-to-English Machine Translation Using Recurrent Neural Networks</a> </td> <td> Eric Greenstein / Daniel Penner</td>
</tr>
<tr>
<td> <a href="reports/GriswoldKyle.pdf"> Formatting Instructions for NIPS 2013</a> </td> <td> Kyle G Griswold</td>
</tr>
<tr>
<td> <a href="reports/HongJames.pdf"> Sentiment Analysis with Deeply Learned Distributed Representations of Variable Length Texts</a> </td><td> James Hong / Michael Fang </td>
</tr>
<tr>
<td> <a href="reports/HongSeokho.pdf"> Improving Paragraph2Vec</a> </td> <td> Seokho Hong</td>
</tr>
<tr>
<td> <a href="reports/JindalPranav.pdf"> Deanonymizing Quora Answers</a> </td> <td> Pranav Jindal / Ashwin Paranjape</td>
</tr>
<tr>
<td> <a href="reports/KapashiDarshan.pdf"> Answering Reading Comprehension Using Memory Networks</a> </td> <td> Darshan Kapashi / Pararth Shah</td>
</tr>
<tr>
<td> <a href="reports/KhoslaNeal.pdf"> Learning Sentence Vector Representations to Summarize Yelp Reviews</a> </td> <td> Neal Khosla / Vignesh Venkataraman</td>
</tr>
<tr>
<td> <a href="reports/LambAndrew.pdf"> Convolutional Encoders for Neural Machine Translation</a> </td> <td> Andrew Lamb / Michael Xie</td>
</tr>
<tr>
<td> <a href="reports/LiGuoxing.pdf"> Restaurant Menu Generation From User Reviews</a> </td> <td> Guoxing Li / Tianxin Zhao</td>
</tr>
<tr>
<td> <a href="reports/LiuShenxiu.pdf"> Conquering vanishing gradient: Tensor Tree LSTM on aspect-sentiment classification</a> </td> <td> Shenxiu Liu / Qingyun Sun</td>
</tr>
<tr>
<td> <a href="reports/LongReginald.pdf"> Application of Neural Networks in the Semantic Parsing Re-Ranking Problem</a> </td> <td> Reginald Long / Colin Wei</td>
</tr>
<tr>
<td> <a href="reports/MackeStephen.pdf"> Deep Sentence-Level Authorship Attribution</a> </td> <td> Stephen Macke / Jason Hirshman</td>
</tr>
<tr>
<td> <a href="reports/ManiArathi.pdf"> Solving Text Imputation Using Recurrent Neural Networks</a> </td> <td> Arathi Mani </td>
</tr>
<tr>
<td> <a href="reports/MarxElliot.pdf"> Aspect Specific Sentiment Analysis of Unstructured Online Reviews</a> </td> <td> Elliot Marx / Zachary Yellin-Flaherty</td>
</tr>
<tr>
<td> <a href="reports/NayakNeha.pdf"> Learning Hypernymy over Word Embeddings</a> </td> <td> Neha Nayak</td>
</tr>
<tr>
<td> <a href="reports/NayebiAran.pdf"> GRUV: Algorithmic Music Generation using Recurrent Neural Networks </a> <a href=" https://www.youtube.com/watch?v=0VTI1BBLydE"> <b>( and video )</b> </a></td> <td> Aran Nayebi / Matt Vitelli</td>
</tr>
<tr>
<td> <a href="reports/NinsuwanKesinee.pdf"> Deep Learning For Mathematical Functions</a> </td> <td> Kesinee Ninsuwan</td>
</tr>
<tr>
<td> <a href="reports/OliveiraLuke.pdf"> Humor Detection in Yelp reviews</a> </td> <td> Luke de Oliveira / Alfredo Lainez Rodrigo</td>
</tr>
<tr>
<td> <a href="reports/OshriBarak.pdf"> There and Back Again: Autoencoders for Textual Reconstruction</a> </td> <td> Barak Oshri / Nishith Khandwala</td>
</tr>
<tr>
<td> <a href="reports/PatelShabaz.pdf"> Semantic image search using queries</a> </td> <td> Shabaz Basheer Patel / Anand Sampat</td>
</tr>
<tr>
<td> <a href="reports/PeddadaAmani.pdf"> EqnMaster: Evaluating Mathematical Expressions with Generative Recurrent Networks</a> </td> <td> Amani V. Peddada / Arthur L. Tsang</td>
</tr>
<tr>
<td> <a href="reports/PoulosJackson.pdf"> Document Similarity using Feed Forward Neural Networks</a> </td> <td> Jackson Poulos / Leonard Bronner</td>
</tr>
<tr>
<td> <a href="reports/PouransariHadi.pdf"> Deep learning for sentiment analysis of movie reviews</a> </td> <td> Hadi Pouransari / Saman Ghili</td>
</tr>
<tr>
<td> <a href="reports/QinLonglu.pdf"> POS tagging of Chinese Buddhist texts using Recurrent Neural Networks</a> </td> <td> Longlu Qin</td>
</tr>
<tr>
<td> <a href="reports/RhodesDylan.pdf"> Author Attribution with CNN’s</a> </td> <td> Dylan Rhodes</td>
</tr>
<tr>
<td> <a href="reports/SadeghianAmir.pdf"> Bag of Words Meets Bags of Popcorn</a> </td> <td> Amir Sadeghian / Ali Reza Sharafat</td>
</tr>
<tr>
<td> <a href="reports/SanbornAdrian.pdf"> Deep Learning for Semantic Similarity</a> </td> <td> Adrian Sanborn / Jacek Skryzalin</td>
</tr>
<tr>
<td> <a href="reports/SharifMilad.pdf"> Recursive Nested Neural Network for Sentiment Analysis</a> </td> <td> Milad Sharif / Hossein Karkeh Abadi</td>
</tr>
<tr>
<td> <a href="reports/ShiehEvan.pdf"> Modeling Hotel Quality Belief in Natural Language Reviews</a> </td> <td> Evan Shieh / Alex Zamoshchin</td>
</tr>
<tr>
<td> <a href="reports/Shirani-MehrH.pdf"> Applications of Deep Learning to Sentiment Analysis of Movie Reviews</a> </td> <td> Houshmand Shirani-Mehr</td>
</tr>
<tr>
<td> <a href="reports/SinghAmandeep.pdf"> Recurrent Recursive Neural Networks for Sentiment Analysis</a> </td> <td> Amandeep Singh</td>
</tr>
<tr>
<td> <a href="reports/SongWilliam.pdf"> End-to-End Deep Neural Network for Automatic Speech Recognition</a> </td> <td> William Song / Jim Cai</td>
</tr>
<tr><td> <a href="reports/TimmarajuAditya.pdf"> Sentiment Analysis on Movie Reviews using Recursive and Recurrent Neural Network Architectures</a> </td> <td> Aditya Timmaraju / Vikesh Khanna</td>
</tr>
<tr>
<td> <a href="reports/TingJason.pdf"> A Look Into the World of Reddit with Neural Networks</a> </td> <td> Jason Ting </td>
</tr>
<tr>
<td> <a href="reports/WangBo.pdf"> Deep Learning for Aspect-Based Sentiment Analysis</a> </td> <td> Bo Wang / Min Liu</td>
</tr>
<tr>
<td> <a href="reports/WangYilun.pdf"> We know what you are going to post: <br> User Status Generation Based on Personality and Topic</a> </td> <td> Yilun Wang / Shijie Liu</td>
</tr>
<tr>
<td> <a href="reports/XingMargaret.pdf"> From Movie Reviews to Restaurants Recommendation</a> </td> <td> Xing Margaret FU / Xiaocheng LI</td>
</tr>
<tr>
<td> <a href="reports/XuPeng.pdf"> On the effectiveness and simplicity of linear recursive neural network</a> </td> <td> Peng Xu / Ruoxi Wang</td>
</tr>
<tr>
<td> <a href="reports/YaoLeon.pdf"> Wallace: Author Detection via Recurrent Neural Networks</a> </td> <td> Leon Yao / Derrick Liu</td>
</tr>
<tr>
<td> <a href="reports/YuanYe.pdf"> Twitter Sentiment Analysis with Recursive Neural Networks</a> </td> <td> Ye Yuan / You Zhou</td>
</tr>
<tr>
<td> <a href="reports/YuApril.pdf"> Multiclass Sentiment Prediction using Yelp Business Reviews</a> </td> <td> April Yu / Daryl Chang</td>
</tr>
<tr>
<td> <a href="reports/ZhongVictor.pdf"> Learning Representations for Relation Classification</a> </td> <td> Victor Zhong </td>
</tr>
</table>
</div>
<!-- jQuery and Boostrap -->
<script src="https://ajax.googleapis.com/ajax/libs/jquery/1.11.1/jquery.min.js"></script>
<script src="https://maxcdn.bootstrapcdn.com/bootstrap/3.2.0/js/bootstrap.min.js"></script>
</body>
</html>