-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathablation_stage_3.py
170 lines (142 loc) · 4.78 KB
/
ablation_stage_3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
import numpy as np
from tensorflow.keras.callbacks import ModelCheckpoint, EarlyStopping
from tensorflow.keras.models import Model
from tensorflow.keras.layers import (
Input,
Dense,
Dropout,
Conv1D,
Flatten,
Lambda,
Permute,
Multiply,
)
import tensorflow.keras.backend as K
import tensorflow as tf
from activations import Mish
from optimizers import Ranger
import losses as l
import callbacks as cb
from layers import Attention, LayerNormalization
from data import dataset
from generator import generator
import joblib
results = joblib.load("stage_2.dmp")
print(results)
strategy = tf.distribute.MirroredStrategy()
data = dataset("data/ninaPro")
reps = np.unique(data.repetition)
val_reps = reps[3::2]
train_reps = reps[np.where(np.isin(reps, val_reps, invert=True))]
test_reps = val_reps[-1].copy()
val_reps = val_reps[:-1]
train = generator(data, list(train_reps))
validation = generator(data, list(val_reps), augment=False)
test = generator(data, [test_reps][0], augment=False)
n_time = train[0][0].shape[1]
n_class = 53
n_features = train[0][0].shape[-1]
model_pars = {
"n_time": n_time,
"n_class": n_class,
"n_features": n_features,
"dense": [500,500,2000],
"drop": [0.36 for _ in range(3)],
}
def build(model_fn):
cosine = cb.CosineAnnealingScheduler(
T_max=50, eta_max=1e-3, eta_min=1e-5, verbose=1, epoch_start=5
)
loss = l.focal_loss(gamma=3., alpha=6.)
with strategy.scope():
model = model_fn(**model_pars)
model.compile(Ranger(learning_rate=1e-3), loss=loss, metrics=["accuracy"])
print(model.summary())
return model, cosine
def attention_simple(inputs, n_time):
input_dim = int(inputs.shape[-1])
a = Permute((2, 1), name='temporalize')(inputs)
a = Dense(n_time, activation='softmax', name='attention_probs')(a)
a_probs = Permute((2, 1), name='attention_vec')(a)
output_attention_mul = Multiply(name='focused_attention')([inputs, a_probs])
output_flat = Lambda(lambda x: K.sum(x, axis=1), name='temporal_average')(output_attention_mul)
return output_flat, a_probs
def no_class_model(n_time, n_class, n_features, dense=None, drop=None):
inputs = Input((n_time, n_features))
x = inputs
x = Conv1D(filters=128, kernel_size=3, padding="same", activation=Mish())(x)
x = LayerNormalization()(x)
x, a = attention_simple(x, n_time)
x = Dropout(0.36)(x)
outputs = Dense(n_class, activation="softmax")(x)
model = Model(inputs, outputs)
return model
def small_class_model(n_time, n_class, n_features, dense=None, drop=None):
inputs = Input((n_time, n_features))
x = inputs
x = Conv1D(filters=128, kernel_size=3, padding="same", activation=Mish())(x)
x = LayerNormalization()(x)
x, a = attention_simple(x, n_time)
x = Dropout(0.36)(x)
x = Dense(500)(x)
x = LayerNormalization()(x)
outputs = Dense(n_class, activation="softmax")(x)
model = Model(inputs, outputs)
return model
def no_layer_norm_model(n_time, n_class, n_features, dense=None, drop=None):
inputs = Input((n_time, n_features))
x = inputs
x = Conv1D(filters=128, kernel_size=3, padding="same", activation=Mish())(x)
x, a = attention_simple(x, n_time)
for d, dr in zip(dense, drop):
x = Dropout(dr)(x)
x = Dense(d, activation=Mish())(x)
outputs = Dense(n_class, activation="softmax")(x)
model = Model(inputs, outputs)
return model
def relu_model(n_time, n_class, n_features, dense=None, drop=None):
inputs = Input((n_time, n_features))
x = inputs
x = Conv1D(filters=128, kernel_size=3, padding="same", activation="relu")(x)
x, a = attention_simple(x, n_time)
for d, dr in zip(dense, drop):
x = Dropout(dr)(x)
x = Dense(d, activation="relu")(x)
x = LayerNormalization()(x)
outputs = Dense(n_class, activation="softmax")(x)
model = Model(inputs, outputs)
return model
'''
stage 2: interest in feed forward area:
directly to output layer
small classifier
no layer norm
relu
'''
stage_3 = dict(zip(["no_class","small_class","no_norm","relu"], [no_class_model, small_class_model, no_layer_norm_model, relu_model]))
for k in stage_3.keys():
model, cosine = build(stage_3[k])
model.fit(
train,
epochs=55,
validation_data=validation,
callbacks=[
ModelCheckpoint(
f"h5/{k}.h5",
monitor="val_loss",
keep_best_only=True,
save_weights_only=True,
),
cosine,
],
use_multiprocessing=True,
workers=8,
shuffle = False,
)
results[k] = {}
results[k]["validation"] = model.evaluate(validation)
results[k]["test"] = model.evaluate(test)
print("results")
print()
print(results)
joblib.dump(results, "stage_3.dmp")