forked from tomfalainen/neural-word-search
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluate.py
476 lines (393 loc) · 19 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
#!/usr/bin/env python2
# -*- coding: utf-8 -*-
"""
Created on Thu Nov 9 14:56:02 2017
@author: tomas
"""
from contextlib import closing
from multiprocessing import Pool as PyPool
import easydict
import torch
import numpy as np
import logging
np.errstate(divide='ignore', invalid='ignore')
import misc.box_utils as box_utils
from misc.boxIoU import bbox_overlaps
logger = logging.getLogger('evaluate')
def pairwise_cosine_distances(x, y, batch_size=1000):
"""
Input: x is a Nxd matrix
y is an Mxd matirx
Output: dist is a NxM matrix where dist[i,j] is the cosine distance between x[i,:] and y[j,:]
"""
y_norm = y.norm(2, dim=1)
def cos(x):
x_norm = x.norm(2, dim=1)
return 1 - torch.mm(x, torch.transpose(y, 0, 1)) / torch.ger(x_norm, y_norm)
dist = []
for v in x.split(batch_size):
dist.append(cos(v))
dist = torch.cat(dist, dim=0)
return dist
def hyperparam_search(model, valloader, args, opt, score_vars='all'):
variables = ['score_nms_overlap', 'score_threshold', 'test_rpn_nms_thresh']
ranges = [np.arange(0.1, 0.71, 0.1), np.arange(0.0, 0.1, 0.01), np.arange(0.1, 0.51, 0.1)]
best = {}
use_dtp = args.use_external_proposals
for (variable, vals) in zip(variables, ranges):
maps = []
best_score = 0.0
best_val = -1
for v in vals:
args[variable] = v
log, rf, rt = mAP(model, valloader, args, 0)
if not use_dtp:
rt = rf
if score_vars == '50':
score = (rt.mAP_qbe_50 + rt.mAP_qbs_50) / 2
else:
score = (rt.mAP_qbe_50 + rt.mAP_qbs_50 + rt.mAP_qbe_25 + rt.mAP_qbs_25) / 4
maps.append([rt.mAP_qbe_50, rt.mAP_qbs_50])
if score > best_score:
best_score = score
best_val = v
best[variable] = (best_score, best_val)
args[variable] = opt[variable]
for v in variables:
args[v] = best[v][1]
args.use_external_proposals = use_dtp
def my_unique(tensor1d):
""" until pytorch adds this """
t, idx = np.unique(tensor1d.cpu().numpy(), return_inverse=True)
return t.shape[0]
def recall_torch(proposals, gt_boxes, ot):
if proposals.nelement() == 0:
return 0.0
overlap = bbox_overlaps(proposals, gt_boxes)
vals, inds = overlap.max(dim=1)
i = vals >= ot
covered = my_unique(inds[i])
recall = float(covered) / float(gt_boxes.size(0))
return recall
def recalls(proposals, gt_boxes, overlap_thresholds, entry, key):
for ot in overlap_thresholds:
entry['%s_recall_%d' % (key, ot * 100)] = recall_torch(proposals, gt_boxes, ot)
def extract_features(model, loader, args, numpy=True):
outputs = []
model.eval()
for data in loader:
(img, oshape, gt_boxes, external_proposals, gt_embeddings, gt_labels) = data
logger.info('ground truth proposals: %d', len(gt_boxes[0]))
logger.info('external_proposals dtp: %d', len(external_proposals[0]))
if args.max_proposals == -1:
model.setTestArgs({'rpn_nms_thresh': args.rpn_nms_thresh, 'max_proposals': external_proposals.size(1)})
else:
model.setTestArgs({'rpn_nms_thresh': args.rpn_nms_thresh, 'max_proposals': args.max_proposals})
input = (img, gt_boxes[0].float(), external_proposals[0].float())
out = model.evaluate(input, args.gpu, numpy)
outputs.append(out)
model.train()
return outputs
def mAP(model, loader, args, it):
logger.info('Extract features')
features = extract_features(model, loader, args, args.numpy)
# logger.info('Storing features.pt...')
# torch.save(features, 'features.pt')
logger.info('Extract features done')
recall = 3
split = loader.dataset.split
args.overlap_thresholds = [0.25, 0.5]
if loader.dataset.dataset == 'iam':
res = mAP_eval(features, loader, args, model)
total_recall = np.mean([e['%d_total_recall_50' % recall] for e in res.log])
rpn_recall = np.mean([e['%d_rpn_recall_50' % recall] for e in res.log])
pargs = (res.mAP_qbe_50 * 100, res.mAP_qbs_50 * 100, total_recall * 100, rpn_recall * 100)
rs2 = 'QbE mAP: %.1f, QbS mAP: %.1f, recall: %.1f, rpn_recall: %.1f, With DTP 50%% overlap' % pargs
log = '--------------------------------\n'
# log += '[%s set iter %d] %s\n' % (split, it + 1, rs1)
log += '[%s set iter %d] %s\n' % (split, it + 1, rs2)
log += '--------------------------------\n'
return log, res, res
else:
args.use_external_proposals = False
logger.info('use_external_proposals: %s', args.use_external_proposals)
res = mAP_eval(features, loader, args, model)
total_recall = np.mean([e['%d_total_recall_25' % recall] for e in res.log])
rpn_recall = total_recall # np.mean([e['%d_rpn_recall_25' % recall] for e in res.log])
pargs = (res.mAP_qbe_25 * 100, res.mAP_qbs_25 * 100, total_recall * 100, rpn_recall * 100)
rs1 = 'QbE mAP: %.1f, QbS mAP: %.1f, recall: %.1f, rpn_recall: %.1f 25%% overlap' % pargs
total_recall = np.mean([e['%d_total_recall_50' % recall] for e in res.log])
rpn_recall = total_recall
pargs = (res.mAP_qbe_50 * 100, res.mAP_qbs_50 * 100, total_recall * 100, rpn_recall * 100)
rs2 = 'QbE mAP: %.1f, QbS mAP: %.1f, recall: %.1f, rpn_recall: %.1f 50%% overlap' % pargs
args.use_external_proposals = True
logger.info('use_external_proposals: %s', args.use_external_proposals)
res_true = mAP_eval(features, loader, args, model)
total_recall = np.mean([e['%d_total_recall_25' % recall] for e in res_true.log])
rpn_recall = np.mean([e['%d_rpn_recall_25' % recall] for e in res_true.log])
pargs = (res_true.mAP_qbe_25 * 100, res_true.mAP_qbs_25 * 100, total_recall * 100, rpn_recall * 100)
rs3 = 'QbE mAP: %.1f, QbS mAP: %.1f, recall: %.1f, rpn_recall: %.1f, With DTP 25%% overlap' % pargs
total_recall = np.mean([e['%d_total_recall_50' % recall] for e in res_true.log])
rpn_recall = np.mean([e['%d_rpn_recall_50' % recall] for e in res_true.log])
pargs = (res_true.mAP_qbe_50 * 100, res_true.mAP_qbs_50 * 100, total_recall * 100, rpn_recall * 100)
rs4 = 'QbE mAP: %.1f, QbS mAP: %.1f, recall: %.1f, rpn_recall: %.1f, With DTP 50%% overlap' % pargs
log = '--------------------------------\n'
log += '[%s set iter %d] %s\n' % (split, it + 1, rs1)
log += '[%s set iter %d] %s\n' % (split, it + 1, rs2)
log += '[%s set iter %d] %s\n' % (split, it + 1, rs3)
log += '[%s set iter %d] %s\n' % (split, it + 1, rs4)
log += '--------------------------------\n'
return log, res, res_true
def mAP_eval(features, loader, args, model):
logger.info('mAP_eval -> postprocessing')
d = postprocessing(features, loader, args, model)
d += (args,)
results = calcuate_mAPs(*d)
return results
def postprocessing(features, loader, args, model):
score_threshold = args.score_threshold
overlap_thresholds = args.overlap_thresholds
num_queries = args.num_queries
all_gt_boxes = []
joint_boxes = []
log = []
qbs_queries, qbs_qtargets = loader.dataset.get_queries(tensorize=True)
qbe_queries, gt_targets = [], []
for li, data in enumerate(loader):
qbe_queries.append(features[li][4].numpy())
gt_targets.append(torch.squeeze(data[5]).numpy())
qbe_queries, qbe_qtargets = loader.dataset.dataset_query_filter(qbe_queries, gt_targets, tensorize=True)
gt_targets = torch.from_numpy(np.concatenate(gt_targets, axis=0))
if num_queries < 1:
num_queries = len(qbe_queries) + len(qbs_queries) + 1
qbe_queries = qbe_queries[:num_queries]
qbs_queries = qbs_queries[:num_queries]
qbe_qtargets = qbe_qtargets[:num_queries]
qbs_qtargets = qbs_qtargets[:num_queries]
max_overlaps, amax_overlaps = [], []
overlaps = []
all_gt_boxes = []
db_targets = []
db = []
joint_boxes = []
log = []
offset = [0, 0]
n_gt = 0
for li, data in enumerate(loader):
rpn_roi_scores, external_proposals_scores, rpn_roi_boxes, rpn_roi_embed, gt_embed, external_proposals_embed = features[li]
(img, oshape, gt_boxes, external_proposals_boxes, gt_embeddings, gt_labels) = data
# boxes are xcycwh from dataloader, convert to x1y1x2y2
external_proposals_boxes = box_utils.xcycwh_to_x1y1x2y2(external_proposals_boxes[0].float())
gt_boxes = box_utils.xcycwh_to_x1y1x2y2(gt_boxes[0].float())
img = torch.squeeze(img)
gt_boxes = torch.squeeze(gt_boxes)
all_gt_boxes.append(gt_boxes)
gt_labels = torch.squeeze(gt_labels)
gt_embeddings = torch.squeeze(gt_embeddings)
gt_boxes = gt_boxes.cuda()
gt_embeddings = gt_embeddings.cuda()
gt_labels = gt_labels.cuda()
rpn_roi_scores = rpn_roi_scores.cuda()
external_proposals_scores = external_proposals_scores.cuda()
external_proposals_embed = external_proposals_embed.cuda()
rpn_roi_boxes = rpn_roi_boxes.cuda()
rpn_roi_embed = rpn_roi_embed.cuda()
gt_embed = gt_embed.cuda()
external_proposals_boxes = external_proposals_boxes.cuda()
# convert to probabilities with sigmoid
scores = 1 / (1 + torch.exp(-rpn_roi_scores))
if args.use_external_proposals:
external_proposals_scores = 1 / (1 + torch.exp(-external_proposals_scores))
scores = torch.cat((scores, external_proposals_scores), 0)
rpn_roi_boxes = torch.cat((rpn_roi_boxes, external_proposals_boxes), 0)
rpn_roi_embed = torch.cat((rpn_roi_embed, external_proposals_embed), 0)
# calculate the different recalls before NMS
entry = {}
recalls(rpn_roi_boxes, gt_boxes, overlap_thresholds, entry, '1_total')
# Since slicing empty array doesn't work in torch, we need to do this explicitly
if args.use_external_proposals:
nrpn = len(rpn_roi_scores)
rpn_proposals = rpn_roi_boxes[:nrpn]
dtp_proposals = rpn_roi_boxes[nrpn:]
recalls(dtp_proposals, gt_boxes, overlap_thresholds, entry, '1_dtp')
recalls(rpn_proposals, gt_boxes, overlap_thresholds, entry, '1_rpn')
threshold_pick = torch.squeeze(scores > score_threshold)
scores = scores[threshold_pick]
tmp = threshold_pick.view(-1, 1).expand(threshold_pick.size(0), 4)
rpn_roi_boxes = rpn_roi_boxes[tmp].view(-1, 4)
rpn_roi_embed = rpn_roi_embed[threshold_pick.view(-1, 1).expand(threshold_pick.size(0), rpn_roi_embed.size(1))].view(-1,
rpn_roi_embed.size(
1))
recalls(rpn_roi_boxes, gt_boxes, overlap_thresholds, entry, '2_total')
if args.use_external_proposals:
rpn_proposals = rpn_proposals[tmp[:nrpn]].view(-1, 4)
dtp_proposals = dtp_proposals[tmp[nrpn:]].view(-1, 4)
recalls(dtp_proposals, gt_boxes, overlap_thresholds, entry, '2_dtp')
recalls(rpn_proposals, gt_boxes, overlap_thresholds, entry, '2_rpn')
dets = torch.cat([rpn_roi_boxes.float(), scores], 1)
if dets.size(0) <= 1:
continue
pick = box_utils.nms(dets, args.score_nms_overlap)
tt = torch.zeros(len(dets)).byte().cuda()
tt[pick] = 1
rpn_roi_boxes = rpn_roi_boxes[pick]
rpn_roi_embed = rpn_roi_embed[pick]
scores = scores[pick]
recalls(rpn_roi_boxes, gt_boxes, overlap_thresholds, entry, '3_total')
if args.use_external_proposals:
nrpn = rpn_proposals.size(0)
tmp = tt.view(-1, 1).expand(tt.size(0), 4)
rpn_proposals = rpn_proposals[tmp[:nrpn]].view(-1, 4)
dtp_proposals = dtp_proposals[tmp[nrpn:]].view(-1, 4)
recalls(dtp_proposals, gt_boxes, overlap_thresholds, entry, '3_dtp')
recalls(rpn_proposals, gt_boxes, overlap_thresholds, entry, '3_rpn')
overlap = bbox_overlaps(rpn_roi_boxes, gt_boxes)
overlaps.append(overlap)
max_gt_overlap, amax_gt_overlap = overlap.max(dim=1)
proposal_labels = torch.Tensor([gt_labels[i] for i in amax_gt_overlap])
proposal_labels = proposal_labels.cuda()
mask = overlap.sum(dim=1) == 0
proposal_labels[mask] = loader.dataset.get_vocab_size() + 1
max_overlaps.append(max_gt_overlap)
amax_overlaps.append(amax_gt_overlap + n_gt)
n_gt += len(gt_boxes)
# Artificially make a huge image containing all the boxes to be able to
# perform nms on distance to query
rpn_roi_boxes[:, 0] += offset[1]
rpn_roi_boxes[:, 1] += offset[0]
rpn_roi_boxes[:, 2] += offset[1]
rpn_roi_boxes[:, 3] += offset[0]
joint_boxes.append(rpn_roi_boxes)
offset[0] += img.shape[0]
offset[1] += img.shape[1]
db_targets.append(proposal_labels)
db.append(rpn_roi_embed)
log.append(entry)
db = torch.cat(db, dim=0)
db_targets = torch.cat(db_targets, dim=0)
joint_boxes = torch.cat(joint_boxes, dim=0)
max_overlaps = torch.cat(max_overlaps, dim=0)
amax_overlaps = torch.cat(amax_overlaps, dim=0)
all_gt_boxes = torch.cat(all_gt_boxes, dim=0)
assert qbe_queries.shape[0] == qbe_qtargets.shape[0]
assert qbs_queries.shape[0] == qbs_qtargets.shape[0]
assert db.shape[0] == db_targets.shape[0]
qbe_queries = qbe_queries.cuda()
qbs_queries = qbs_queries.cuda()
qbe_dists = pairwise_cosine_distances(qbe_queries, db)
qbs_dists = pairwise_cosine_distances(qbs_queries, db)
qbe_dists = qbe_dists.cpu()
qbs_dists = qbs_dists.cpu()
db_targets = db_targets.cpu()
joint_boxes = joint_boxes.cpu()
max_overlaps = max_overlaps.cpu()
amax_overlaps = amax_overlaps.cpu()
gt_targets = gt_targets.numpy()
qbs_qtargets = qbs_qtargets.numpy()
qbe_qtargets = qbe_qtargets.numpy()
qbe_dists = qbe_dists.numpy()
qbs_dists = qbs_dists.numpy()
db_targets = db_targets.numpy()
joint_boxes = joint_boxes.numpy()
max_overlaps = max_overlaps.numpy()
amax_overlaps = amax_overlaps.numpy()
# A hack for some printing compatability
if not args.use_external_proposals:
keys = []
for i in range(1, 4):
for ot in args.overlap_thresholds:
keys += ['%d_dtp_recall_%d' % (i, ot * 100),
'%d_rpn_recall_%d' % (i, ot * 100)]
for entry in log:
for key in keys:
if not entry.has_key(key):
entry[key] = entry['1_total_recall_50']
return (qbe_dists, qbe_qtargets, qbs_dists, qbs_qtargets, db_targets, gt_targets,
joint_boxes, max_overlaps, amax_overlaps, log)
def calcuate_mAPs(qbe_dists, qbe_qtargets, qbs_dists, qbs_qtargets, db_targets,
gt_targets, joint_boxes, max_overlaps, amax_overlaps, log, args, loader):
logger.info('Calculate mAPs')
results = easydict.EasyDict()
results['log'] = log
for ot in args.overlap_thresholds:
logger.info('mAP parallel: qbe [overlap = %.2f]', ot)
mAP_qbe, mR_qbe = mAP_parallel(qbe_dists, qbe_qtargets, db_targets,
gt_targets, joint_boxes, max_overlaps,
amax_overlaps, args.nms_overlap, ot, args.num_workers, args, loader)
logger.info('QbE: mAP = %.2f, mR = %.2f', mAP_qbe * 100, mR_qbe * 100)
logger.info('mAP parallel: qbs [overlap = %.2f]', ot)
mAP_qbs, mR_qbs = mAP_parallel(qbs_dists, qbs_qtargets, db_targets,
gt_targets, joint_boxes, max_overlaps,
amax_overlaps, args.nms_overlap, ot, args.num_workers, args, loader)
logger.info('QbS: mAP = %.2f, mR = %.2f', mAP_qbs * 100, mR_qbs * 100)
results['mAP_qbe_%d' % (ot * 100)] = mAP_qbe
results['mR_qbe_%d' % (ot * 100)] = mR_qbe
results['mAP_qbs_%d' % (ot * 100)] = mAP_qbs
results['mR_qbs_%d' % (ot * 100)] = mR_qbs
return results
def average_precision_segfree(res, t, o, sinds, n_relevant, ot):
"""
Computes the average precision
res: sorted list of labels of the proposals, aka the results of a query.
t: transcription of the query
o: overlap matrix between the proposals and gt_boxes.
sinds: The gt_box with which the proposals overlaps the most.
n_relevant: The number of relevant retrievals in ground truth dataset
ot: overlap_threshold
"""
correct_label = res == t
# The highest overlap between a proposal and a ground truth box
tmp = []
covered = []
# TODO: this shouldn't really happen very often, check if possible at all, potential speed up
for i in range(len(res)):
if sinds[i] not in covered: # if a ground truth box has been covered, mark proposal as irrelevant
tmp.append(o[i])
if o[i] >= ot and correct_label[i]:
covered.append(sinds[i])
else:
tmp.append(0.0)
# for i in range(len(res)):
# tmp.append(o[i, sinds[i]])
tmp = np.array(tmp)
# tmp = o
relevance = correct_label * (tmp >= ot)
covered = np.unique(sinds[relevance])
rel_cumsum = np.cumsum(relevance, dtype=float)
precision = rel_cumsum / np.arange(1, relevance.size + 1)
if n_relevant > 0:
ap = (precision * relevance).sum() / n_relevant
else:
ap = 0.0
return ap, covered
def worker(arg):
dists, t, db_targets, joint_boxes, nms_overlap, max_overlaps, amax_overlaps, gt_targets, ot, num_workers, loader = arg
count = np.sum(db_targets == t)
if count == 0: # i.e., we have missed this word completely
return 0.0, 0.0
sim = 1 - dists
dets = np.hstack((joint_boxes, sim[:, np.newaxis]))
# pick = box_utils.nms_np(dets, nms_overlap)
pick = np.arange(dists.shape[0])
dists = dists[pick]
I = np.argsort(dists)
res = db_targets[pick][I] # Sort results after distance to query image
o = max_overlaps[pick][I]
sinds = amax_overlaps[pick][I]
n_relevant = np.sum(gt_targets == t)
ap, covered = average_precision_segfree(res, t, o, sinds, n_relevant, ot)
r = float(np.unique(covered).shape[0]) / n_relevant
print("mAP = %.2f (%s)" % (ap, loader.dataset.itow[t]))
return ap, r
def mAP_parallel(dists, qtargets, db_targets, gt_targets, joint_boxes,
max_overlaps, amax_overlaps, nms_overlap, ot, num_workers, opt, loader):
args = [(d, t, db_targets, joint_boxes, nms_overlap, max_overlaps,
amax_overlaps, gt_targets, ot, num_workers, loader) for d, t in zip(dists, qtargets)]
if num_workers > 1:
logging.getLogger('map_parallel').info("Using '%d' threads for '%d' args", num_workers, len(args))
with closing(PyPool(num_workers)) as p:
res = p.map(worker, args)
else:
res = [worker(arg) for arg in args]
res = np.array(res)
return np.mean(res, axis=0)