forked from tomfalainen/neural-word-search
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluate_dtp.py
243 lines (202 loc) · 9.36 KB
/
evaluate_dtp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
#!/usr/bin/env python2
# -*- coding: utf-8 -*-
"""
Created on Thu Mar 1 21:59:41 2018
@author: tomas
"""
import torch
import logging
import numpy as np
np.errstate(divide='ignore', invalid='ignore')
import misc.box_utils as box_utils
from misc.boxIoU import bbox_overlaps
from evaluate import extract_features, calcuate_mAPs, recalls, pairwise_cosine_distances
logger = logging.getLogger('evaluate_dtp')
def hyperparam_search(model, valloader, args, opt, score_vars='all'):
variables = ['score_nms_overlap', 'score_threshold']
ranges = [np.arange(0.1, 0.71, 0.1), np.arange(0.0, 0.1, 0.01)]
best = {}
for (variable, vals) in zip(variables, ranges):
maps = []
best_score = 0.0
best_val = -1
for v in vals:
args[variable] = v
log, rf, rt = mAP(model, valloader, args, 0)
if score_vars == '50':
score = (rt.mAP_qbe_50 + rt.mAP_qbs_50) / 2
else:
score = (rt.mAP_qbe_50 + rt.mAP_qbs_50 + rt.mAP_qbe_25 + rt.mAP_qbs_25) / 4
maps.append([rt.mAP_qbe_50, rt.mAP_qbs_50])
if score > best_score:
best_score = score
best_val = v
best[variable] = (best_score, best_val)
args[variable] = opt[variable]
for v in variables:
args[v] = best[v][1]
def mAP(model, loader, args, it):
print('Extract Features')
features = extract_features(model, loader, args, args.numpy)
# print('Saving features.pt')
# torch.save(features, 'features.pt')
# print('Exiting...')
# exit(1)
recall = 3
split = loader.dataset.split
if loader.dataset.dataset == 'iam':
args.overlap_thresholds = [0.25, 0.5]
res = mAP_eval(features, loader, args, model)
total_recall = np.mean([e['%d_total_recall_25' % recall] for e in res.log])
pargs = (res.mAP_qbe_25*100, res.mAP_qbs_25*100, total_recall*100)
rs1 = 'QbE mAP: %.1f, QbS mAP: %.1f, recall: %.1f, With DTP 25%% overlap' % pargs
total_recall = np.mean([e['%d_total_recall_50' % recall] for e in res.log])
pargs = (res.mAP_qbe_50*100, res.mAP_qbs_50*100, total_recall*100)
rs2 = 'QbE mAP: %.1f, QbS mAP: %.1f, recall: %.1f, With DTP 50%% overlap' % pargs
log = '--------------------------------\n'
log += '[%s set iter %d] %s\n' % (split, it + 1, rs1)
log += '[%s set iter %d] %s\n' % (split, it + 1, rs2)
log += '--------------------------------\n'
return log, res, res
else:
args.overlap_thresholds = [0.25, 0.5]
res_true = mAP_eval(features, loader, args, model)
total_recall = np.mean([e['%d_total_recall_25' % recall] for e in res_true.log])
pargs = (res_true.mAP_qbe_25*100, res_true.mAP_qbs_25*100, total_recall*100)
rs3 = 'QbE mAP: %.1f, QbS mAP: %.1f, recall: %.1f, 25%% overlap' % pargs
total_recall = np.mean([e['%d_total_recall_50' % recall] for e in res_true.log])
pargs = (res_true.mAP_qbe_50*100, res_true.mAP_qbs_50*100, total_recall*100)
rs4 = 'QbE mAP: %.1f, QbS mAP: %.1f, recall: %.1f, 50%% overlap' % pargs
log = '--------------------------------\n'
log += '[%s set iter %d] %s\n' % (split, it + 1, rs3)
log += '[%s set iter %d] %s\n' % (split, it + 1, rs4)
log += '--------------------------------\n'
return log, res_true, res_true
def mAP_eval(features, loader, args, model):
print('mAP_eval -> postprocessing')
d = postprocessing(features, loader, args, model)
d += (args, )
results = calcuate_mAPs(*d)
return results
def postprocessing(features, loader, args, model):
score_nms_overlap = args.score_nms_overlap #For wordness scores
score_threshold = args.score_threshold
overlap_thresholds = args.overlap_thresholds
num_queries = args.num_queries
all_gt_boxes = []
joint_boxes = []
log = []
qbs_queries, qbs_qtargets = loader.dataset.get_queries(tensorize=True)
qbe_queries, gt_targets = [], []
for li, data in enumerate(loader):
qbe_queries.append(features[li][1].numpy())
gt_targets.append(torch.squeeze(data[5]).numpy())
qbe_queries, qbe_qtargets = loader.dataset.dataset_query_filter(qbe_queries, gt_targets, tensorize=True)
gt_targets = torch.from_numpy(np.concatenate(gt_targets, axis=0))
if num_queries < 1:
num_queries = len(qbe_queries) + len(qbs_queries) + 1
qbe_queries = qbe_queries[:num_queries]
qbs_queries = qbs_queries[:num_queries]
qbe_qtargets = qbe_qtargets[:num_queries]
qbs_qtargets = qbs_qtargets[:num_queries]
max_overlaps, amax_overlaps = [], []
overlaps = []
all_gt_boxes = []
db_targets = []
db = []
joint_boxes = []
log = []
offset = [0, 0]
n_gt = 0
for li, data in enumerate(loader):
scores, gt_embed, embeddings = features[li]
(img, oshape, gt_boxes, dtp_proposals, gt_embeddings, gt_labels) = data
#boxes are xcycwh from dataloader, convert to x1y1x2y2
dtp_proposals = box_utils.xcycwh_to_x1y1x2y2(dtp_proposals[0].float())#.round()#.int()
gt_boxes = box_utils.xcycwh_to_x1y1x2y2(gt_boxes[0].float())#.round()#.int()
img = torch.squeeze(img)
gt_boxes = torch.squeeze(gt_boxes)
all_gt_boxes.append(gt_boxes)
gt_labels = torch.squeeze(gt_labels)
gt_embeddings = torch.squeeze(gt_embeddings)
gt_boxes = gt_boxes.cuda()
gt_embeddings = gt_embeddings.cuda()
gt_labels = gt_labels.cuda()
scores = scores.cuda()
embeddings = embeddings.cuda()
gt_embed = gt_embed.cuda()
dtp_proposals = dtp_proposals.cuda()
#convert to probabilities with sigmoid
scores = 1 / (1 + torch.exp(-scores))
#calculate the different recalls before NMS
entry = {}
logger.debug('1_DTP proposals: %d', dtp_proposals.shape[0])
recalls(dtp_proposals, gt_boxes, overlap_thresholds, entry, '1_total')
threshold_pick = torch.squeeze(scores > score_threshold)
scores = scores[threshold_pick]
tmp = threshold_pick.view(-1, 1).expand(threshold_pick.size(0), 4)
dtp_proposals = dtp_proposals[tmp].view(-1, 4)
embeddings = embeddings[threshold_pick.view(-1, 1).expand(threshold_pick.size(0), embeddings.size(1))].view(-1, embeddings.size(1))
logger.debug("2_DTP proposals: %d", dtp_proposals.shape[0])
recalls(dtp_proposals, gt_boxes, overlap_thresholds, entry, '2_total')
dets = torch.cat([dtp_proposals.float(), scores], 1)
pick = box_utils.nms(dets, score_nms_overlap)
tt = torch.zeros(len(dets)).byte().cuda()
tt[pick] = 1
dtp_proposals = dtp_proposals[pick]
embeddings = embeddings[pick]
scores = scores[pick]
logger.debug("3_DTP proposals: %d", dtp_proposals.shape[0])
recalls(dtp_proposals, gt_boxes, overlap_thresholds, entry, '3_total')
overlap = bbox_overlaps(dtp_proposals, gt_boxes)
overlaps.append(overlap)
max_gt_overlap, amax_gt_overlap = overlap.max(dim=1)
proposal_labels = torch.Tensor([gt_labels[i] for i in amax_gt_overlap])
proposal_labels = proposal_labels.cuda()
mask = overlap.sum(dim=1) == 0
proposal_labels[mask] = loader.dataset.get_vocab_size() + 1
max_overlaps.append(max_gt_overlap)
amax_overlaps.append(amax_gt_overlap + n_gt)
n_gt += len(gt_boxes)
# Artificially make a huge image containing all the boxes to be able to
# perform nms on distance to query
dtp_proposals[:, 0] += offset[1]
dtp_proposals[:, 1] += offset[0]
dtp_proposals[:, 2] += offset[1]
dtp_proposals[:, 3] += offset[0]
joint_boxes.append(dtp_proposals)
offset[0] += img.shape[0]
offset[1] += img.shape[1]
db_targets.append(proposal_labels)
db.append(embeddings)
log.append(entry)
db = torch.cat(db, dim=0)
db_targets = torch.cat(db_targets, dim=0)
joint_boxes = torch.cat(joint_boxes, dim=0)
max_overlaps = torch.cat(max_overlaps, dim=0)
amax_overlaps = torch.cat(amax_overlaps, dim=0)
all_gt_boxes = torch.cat(all_gt_boxes, dim=0)
assert qbe_queries.shape[0] == qbe_qtargets.shape[0]
assert qbs_queries.shape[0] == qbs_qtargets.shape[0]
assert db.shape[0] == db_targets.shape[0]
qbe_queries = qbe_queries.cuda()
qbs_queries = qbs_queries.cuda()
qbe_dists = pairwise_cosine_distances(qbe_queries, db)
qbs_dists = pairwise_cosine_distances(qbs_queries, db)
qbe_dists = qbe_dists.cpu()
qbs_dists = qbs_dists.cpu()
db_targets = db_targets.cpu()
joint_boxes = joint_boxes.cpu()
max_overlaps = max_overlaps.cpu()
amax_overlaps = amax_overlaps.cpu()
gt_targets = gt_targets.numpy()
qbs_qtargets = qbs_qtargets.numpy()
qbe_qtargets = qbe_qtargets.numpy()
qbe_dists = qbe_dists.numpy()
qbs_dists = qbs_dists.numpy()
db_targets = db_targets.numpy()
joint_boxes = joint_boxes.numpy()
max_overlaps = max_overlaps.numpy()
amax_overlaps = amax_overlaps.numpy()
return (qbe_dists, qbe_qtargets, qbs_dists, qbs_qtargets, db_targets, gt_targets,
joint_boxes, max_overlaps, amax_overlaps, log)